EASTERN UNIVERSITY, SRI LANK University, Still

LUI!

FIRST EXAMINATION IN SCIENCE (2002/2003)

(April/May'2004)

kin (a) d. dollardi sam yalidada Re-Repeat

MT 105 & 106 - PROBABILITY & STATISTICS

AND

DIFFERENTIAL EQUATIONS

Answer <u>four</u> questions only selecting <u>two</u> questions from each section

Time: Two hours

Section - A

1. Given the following frequency distribution.

Class interval	Frequency
15 - 25	feel 4 (ast)
25 - 35	11
35 - 45	19
45 - 55	14
55 - 65	6
65 - 75	. 2

- (a) Draw the histogram and frequency polygon.
- (b) Find the mean, median and mode for the above data.
- (c) Find the mean deviation and variance.

- 2. (a) i. Define the term random variable.
 - ii. Consider an urn containing 5 red and 3 white balls. A random sample of size 3 is selected (without replacement). Let X be the number of red balls drawn. Find the probability mass function $f_X(x)$ and $P(0 \le X \le 3)$.
 - (b) i. A random variable X follows the Binomial distribution with parameters n and p. Show that

$$E(X) = np$$
 and $Var(X) = npq$, where $q = 1 - p$.

- ii. The output of the production process is 10 percent defective. What is the probability of selecting at least 2 defective in a sample of size 5?
- 3. (a) State the Bayes's theorem.
 - (b) We assume that there are two urns available. The probability of choosing urn1 is $\frac{1}{10}$, for urn2, it is $\frac{9}{10}$. We suppose further that the urns contain black and white balls: in urn1, 70% of the balls are black, in urn2, 40% are black. What is the probability that a black ball is drawn blind folded is from urn1?

Section - B

4. (a) State the necessary and sufficient condition for the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

to be exact.

Solve the following differential equation:

$$(y^2 - x^2 \sin xy)\frac{dy}{dx} = xy \sin xy - \cos xy - e^{2x}.$$

(b) Show that if,

$$\frac{1}{M(x,y)} \left(\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right)$$

is a function of y only and equal to f(y) then, $e^{\int f(y)dy}$ is the integrating factor of M(x,y)dx + N(x,y)dy = 0.

Hence solve the following differential equation

$$3x^2y^2dx + 4(x^3y - 3)dy = 0.$$

5. (a) $F(D) = p_0 D^n + p_1 D^{n-1} + \dots + p_{n-1} D + p_n$ and V be a function of x only, where $D = \frac{d}{dx}$ and p_0, p_1, \dots, p_n are constants. Prove that

i.
$$F(D)xV = xF(D)V + F'(D)V$$
,

ii.
$$\frac{1}{F(D)}xV = x\frac{1}{F(D)}V - \frac{F'(D)}{[F(D)]^2}V$$
, provided $F(D) \neq 0$.

(b) Solve the following differential equations:

i.
$$(D^2 + 9) y = x \cos x$$
,

ii.
$$(D^2 - 6D + 13) y = 8e^{3x} \sin 2x$$
.

6. (a) Find the general solution of the following differential equations:

i.
$$(x^3D^3 + 2x^2D^2)y = x + \sin(\ln x)$$
,
ii. $(1+x)^2\frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \cos[\log(1+x)]$.

(b) Solve the following simultaneous differential equation:

$$(D-3) x + 2 (D+2) y = 2 \sin t,$$

$$2 (D+1) x + (D-1) y = \cos t,$$
 where $D = \frac{d}{dx}$.

TAGESTALES THE RESIDENCE AND