EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE-2002/03 & 2002/03(A)

(April/May-2004)

SECOND SEMESTER

Re-Repeat

MT 106 - TENSOR CALCULUS

Answer all questions
Time: One hour

- 1. (a) Write down the law of transformation for the following tensors:
 - $(i) \quad A_{qr}^{ms}, \qquad (ii) \quad B_{mn}^{pqr}, \qquad (iii) \quad C_{ij}.$
 - (b) A quantity A(p,q,r) is such that in the coordinate system x^t , $A(p,q,r)B_r^{qs}=C_p^s$, where B_r^{qs} is an arbitrary tensor and C_p^s is a tensor. Prove that A(p,q,r) is a tensor.
 - (c) Prove that $A_{pq}x^px^q=0$ if A_{pq} is a skew-symmetric tensor.
 - (d) Find the covariant and contravariant components of a tensor in cylindrical coordinates (ρ, ϕ, z) if its covariant components in rectangular coordinates are 2x z, x^2y , yz.

2. (a) Define the following:

(b) With the usual notations, prove the following:

i.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p],$$

ii.
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn}\Gamma^q_{mn} - g^{qn}\Gamma^p_{mn};$$

iii.
$$\frac{1}{2g}\frac{\partial g}{\partial x^m}=\Gamma^j_{jm}.$$

(c) Determine the Christoffel symbol corresponding to the metric ds is given by

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$$

Prove that Amakar = 0 if App is a shew-sy

dinates are 2x'-- z, x'y, yz,

and find the corresponding Geodesic equations.

Frozom University, Still