

EASTERN UNIVERSITY SRI LANKA FIRST EXAMINATION IN SCIENCE FIRST SEMESTER- 2003/2004 (Proper) CH102 THERMODYNAMICS AND INTRODUCTION TO ELECTROCHEMISTRY

Answer all Questions

Time: 01 hour

l. From the 1st and 2nd laws of Thermodynamics derive the following:

(a) i)
$$dA = -PdV - S dT$$

ii)
$$dG = VdP - SdT$$

$$iii) dH = TdS + VdP$$

- (b) Using the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$, derive the thermodynamic equation of state $\left(\frac{\partial U}{\partial V}\right) = T\left(\frac{\partial P}{\partial T}\right) - P$ and show that for a gas (1 mole), obeying the van der Waals equation of state, $\left(\frac{\partial U}{\partial V}\right)_T = \frac{a}{V^2}$ where U is the molar internal energy and a is the van der Waals constant. Calculate the value $\left(\frac{\partial U}{\partial V}\right)_T$ for a sample of 12 dm³ of N₂
- 2.(a) Standard electrode potential values of three reactions are given as follows:

$$Fe^{3+} + e \longrightarrow Fe^{2+}$$

$$E^0 = 0.76 \text{ V}$$

$$E^0 = 1.26 \text{ V}$$

$$ClO_4^- + 2H^+ + 2e$$
 \longrightarrow $ClO_3^- + H_2O$ $E^0 = 1.2 \text{ V}$

$$E_0 =$$

(i) Find out if Cl₂ can oxidize Fe²⁺.

gas at 300K given that $a = 0.121 \text{ Jm}^3 \text{mol}^{-2}$.

- (ii) Find out the E⁰ value for the reaction between ClO₄ and Fe²⁺.
- (b) Two moles of hydrogen gas (γ for hydrogen is 1.41) is compressed adiabatically from N.T.P. conditions to occupy a volume of 4.48 litres. Calculate the final pressure and temperature.
