

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - 2003/2004(Repeat) SECOND SEMESTER

(June/July-2005)

CH104 ORGANIC REACTION MECHANISM AND CHEMICAL KINETICS

Answer all questions

Time: 01 hour

1) a(I)Distinguish between a transition state and an intermediate

- (II) Compare S_N^{-1} and S_N^{-2} reaction mechanism with respect to i. Order

 - ii. Number of steps
 - iii.Rate and concentration of substrate and reactants
 - iv.Stereochemistry
 - v. Nucleophile
 - vi.Rearrangements

(III)Explain why the rate of an S_N¹ reaction decreases as follows

3°halide fastest → 1° halide slowest

b. (I) Give two examples for strong and weak nucleophile respectively (II)The nitration of benzene can be represented as follows,

$$\frac{NO_2^+}{\text{slow}} \xrightarrow{H} \frac{NO_2}{\text{fast}} \xrightarrow{NO_2} \frac{NO_2}{\text{fast}}$$

- (i) On the basis of mechanism draw and fully label the graph of free energy VS reaction co-ordinate for above reaction. Label the position of reactants, transition state(s), intermediate, product(s)
- (ii) Write a rate law for this reaction
- (iii) On the same graph in (i) draw then free energy profile for
 - a. The nitration of toluene
 - b. The nitration of benzoic acid

- c. Arrange the following compounds in order by increasing basic strength
- (I) Ammonia, Methyl amine, Dimethyl amine, Chloroamine (II)

$$-NH_2$$
 $-NH_2$

- 2)a(i) What is meant by the term half-life of a reaction
 - (ii) A nuclear decomposition follows first order kinetics; a certain radioactive production of a nuclear reaction must be stored until it is 99.9% decomposed if its half life 5000 years, for how long it must be stored.
 - (iii)The thermal decomposition of N_2O_5 is first order kinetics if the rate constant at 25°C is 1.7 X 10^{-5} sec⁻¹ at what rate does N_2O_5 decompose at this temperature (Partial pressure is 50.0 KPa, Gas constant(R) = 8,314 Jmol⁻¹K⁻¹)
- b(i). What is meant by the term steady state approximation in chemical kinetics.

(ii).

$$A \stackrel{k_1}{\Longrightarrow} B \qquad B + C \stackrel{K_3}{\Longrightarrow} D$$

Determine the rate of expression for above reaction in terms of rate constants K_1 , K_2 r the P_A , P_B , P_C & P_D (P_A , P_B , P_C and P_D are partial pressure of A,B,C and D respectively If the concentration of B is small compared with the concentration of A, C, D, show this reaction may follow 1st order equation at high pressure and 2nd order equation at pressure.
