

EASTERN UNIVERSITY, SRI LANKA

FINAL EXAMINATION IN AGRICULTURE (500 SERIES) 2000/2001

AG551: ADVANCED PRODUCTION ECONOMICS

Answer ALL questions.

Time allowed: 03 hours.

- 1. (a) Define a Production Function.
 - (b) Briefly discuss the assumptions of Production Function Analysis.
 - (c) What are the different forms of Production Functions. Give the algebraic forms of these Production Functions.
 - (d) Explain the consequences to the farmer if the production function for milk is a linear function of the amount of feed fed to each cow.
- A single variable production function representing corn yield response to nitrogen fertilizer is given below.

$$Y = 16 X^2 - 4 X^3$$

Where Y = Corn yield Kg / hac. X = Nitrogen fertilizer Kg.

- (a) Find the input levels that form the boundaries of Stage II
- (b) Sketch TPP, APP and MPP on a common set of axes and show the locations of the Stages of Production.
- (c) Check al the relevant Second Order conditions.
- 3. (a) Given the Production Function $Y = A X_1^{b1} X_2^{b2}$. Find the equation of the isoline defined by RTS = 1.
 - (b) Show that the production function. $Y = 10X_1^2 + 11X_1X_2 + 19X_2^2$ exhibits increasing returns to scale.
 - (c) What do you mean by linearly homogenous production function?
 - (d) Are the following functions homogenous or not? If they are homogenous, indicate their degree of homogeneity. Indicate all your work clearly.

1.
$$Y = b_1 X_1 + b_2 X_2$$

3.
$$Z = 14 v_1^2 + 13 V_1 V_2 + 12 V_2^2$$

2.
$$Y = A X_1^{b1} X_2^{b2}$$

4.
$$Y = \frac{a_1 X_1 + b_1 X_2}{a_2 X_2 + b_2 X_2}$$

- 4. Consider a farm that produces both corn and soyabeans. Suppose that the production function for corn is $Yc = f(X_1, X_C)$, where X_1 is fertilizer used in corn production and Xc is land devoted to corn production. Let the production function for soyabeans be Ys = F(Xs) where Xc is land devoted to soyabean production. Find the First Order conditions for Profit maximization for this firm assuming a fixed land base X^0 , that is $C + Xs = X^0$
- 5. (a) Given the Variable Cost (VC) Function $VC = 0.5 y^3 4y^2 + 12y$ (where y = output and Fixed Cost b = 4 and) and price of output (Py) = 9.50 Find out the Average Variable Cost (AVC)
 - (i) Find the output which maximizes the profit
 - (ii) Find the output which maximizes the AVC. What is the value for AVC?.
 - (iii) What is the firm's supply function.
 - (b) Assume that a firm operating in a purely competitive market has the following implicit production function:

$$X - Y_1^2 - Y_2^2 = 0$$

Where: X= Input (kg); and $Y_1 & Y_2$ are Outputs (kg)

- (i) Set up the Lagrangian revenue maximization function.
- (ii) Find out the First Order conditions.
- (iii) What is the Output Expansion Path equation?

ANA/PS