EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE (2001/2002)

FIRST SEMESTER

(April/May ' 2002)

MT 302 - COMPLEX ANALYSIS

Answer all Questions

i

Time : Three hours

26 550

- 1. (a) Define what is meant by "a complex valued function f, defined on a domain $D(\subseteq \mathbb{C})$, is analytic at a point $z_o \in D$ ".
 - (b) Show that if z = x + iy and a function f(z) = U(x, y) + iV(x, y)is analytic at $z_o = (x_o, y_o)$, then the equations

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}$$
 and $\frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}$

are satisfied at every point of some neighborhood of z_o .

Give an example to show that the above condition is not sufficient for f to be analytic.

(c) Find V(x, y) such that f(z) = U(x, y) + iV(x, y) is analytic, where $U(x, y) = e^{-x}(x \sin y - y \cos y)$.

- 2. (a) Let f be a complex valued function defined on a domain $D(\subseteq \mathbb{C})$, and let C be a contour. Define $\int_C f(z)dz$.
 - (b) Let M > 0 be such that $|f(z)| \le M$ for all z on a contour C and l be the length of C. Show that

$$\left|\int_{c} f(z) dz\right| \leq Ml.$$

Hence show that

$$\left| \int_{c} \frac{\log z}{z^2} dz \right| \le \pi \left(\frac{|\log R| + \pi}{R} \right),$$

where C is the arc of the circle |z| = R(> 0) in the upper half plane from z = R to z = -R.

(c) Prove that if a complex - valued function f is analytic and the derivative f' is continuous at all points inside and on a simple closed contour C, then

 $\int f(z)dz = 0.$

Verify the above result for $f(z) = 3z^2 + iz - 4$ over the contour C given by a square with vertices $1 \pm i$ and $-1 \pm i$.

[Any results used here should be clearly stated.]

3. (a) Let f' be analytic everywhere within and on a simple closed contour C, taken in the positive sense. If z_o is any point interior to C, then prove that

$$f(z_o) = \frac{1}{2\pi i} \oint_c \frac{f(z)}{z - z_o} dz.$$

Call and Salt

Hence prove that if f is analytic inside and on a circle with centre $z = \alpha$ and radius R, then

$$f(\alpha) = \frac{1}{2\pi} \int_0^{2\pi} f(\alpha + Re^{i\theta}) d\theta.$$

Evaluate $\frac{1}{2\pi} \int_0^{2\pi} \sin^2(\frac{\pi}{6} + 2e^{i\theta})d\theta$.

(b) Find the following integrals.

i. $\oint_c \frac{e^z}{z^2(z^2-9)} dz \quad \text{where } C \text{ is the circle } C : |z| = 1.$ ii. $\oint_c \frac{z}{(z-1)(z-2)^2} dz \quad \text{where } C \text{ is the circle } C : |z-2| = \frac{1}{2}.$

4. Prove or disprove each of the following statements. Justify your answers.

- (a) Every absolutely convergent series of complex numbers is convergent.
- (b) $f(z) = \frac{z+i}{\overline{z}-i}$ has a derivative at each point in \mathcal{C} .
- (c) Every continuous complex-valued function is differentiable.
- (d) $f(z) = z^2$ is uniformly continuous in the open disk |z| < 1.
- (e) If a function f is entire and bounded for all values of z in the complex plane, then the function f is constant throughout the plane.

3

5. (a) Let f be a complex - valued function and $z_o \in \mathcal{C}$.

Explain what is meant by each of the following statements:

i. f has a pole of order m at z_o ;

- ii: f has a zero of order m at z_o .
- (b) Show that if f is analytic inside and on a simple closed curve C, and f has a pole of order m at z = α then the residue of f at z = α is given by,

$$\lim_{z \to \alpha} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z - \alpha)^m f(z) \right].$$

If p(z) and q(z) are analytic in the neighborhood of z_o , and q(z) has a simple zero at z_o then show that the residue of $\frac{p(z)}{q(z)}$ at z_o is given by $\frac{p(z_o)}{q'(z_o)}$.

- (c) Evaluate $\int_{c} \frac{z^{2} + 4}{z^{3} + 2z^{2} + 2z} dz$ where *C* is the circle $C : |z + 1 - i| = \frac{3}{2}$, taken in the positive sense.
- 6. Prove by contour integration that:

(a)
$$\int_0^\infty \frac{\cos ax}{(x^2+b^2)^2} dx = \frac{\pi}{4b^3} (1+ab)e^{-ab}$$
, if $a > 0$ and $b > 0$;
(b) $\int_0^\infty \frac{\ln(x^2+1)}{(x^2+1)} dx = \pi \ln 2$;
(c) $\int_0^\infty \frac{x \sin 2x}{(x^2+3)} dx = \frac{\pi}{2} e^{-2\sqrt{3}}$.

4