Sri Lovis

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (2001/2002)

FIRST SEMESTER

(April/May ' 2002)

MT 303 - FUNCTIONAL ANALYSIS I

Answer all Questions

Time: Two hours

- 1. (a) Define the terms "complete" and "separable" as applied to a normed linear space.
 - (b) Show that if $1 \le p < \infty$, then the sequence space

$$l^p = \left\{ x = (x_i) : \ x_i \in \mathbb{C}, \ \sum_{i=1}^{\infty} |x_i|^p < \infty \right\}$$

with norm given by $||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$ is complete.

- (c) Show that l^p is separable.
- (d) Is the sequence space

$$l^{\infty} = \left\{ x = (x_i) : x_i \in \mathcal{C}, \sup_i |x_i| < \infty \right\}$$

with norm defined by $||x|| = \sup_{i} |x_{i}|$ separable? Justify your answer.

- 2. (a) Let M be a proper closed subspace of a normed linear space X.

 Prove that for every real number $r \in (0,1)$, there exists $x_r \in X$ such that $||x_r|| = 1$ and $||x_r m|| > r$ for all $m \in M$.
 - (b) Prove that a normed linear space X is of finite dimension if and only if the unit ball $\{x \in X : ||x|| \le 1\}$ is compact.
- 3. (a) Define the term "bounded linear operator" from a normed linear space into another normed linear space.
 - (b) Let T be a linear operator from a normed linear space X into a normed linear space Y. Show that the following statements are equivalent:
 - i. T is continuous at the origin;
 - ii. T is continuous on X;
 - iii. T is bounded.
 - (c) Show that a linear operator $T: X \to Y$ is bounded if and only if T maps bounded subsets of X into bounded subsets of Y.
 - (d) Show that the operator $T: l^2 \to l^2$ defined by $T(x) = (\eta_i), \quad \eta_i = \frac{x_i}{2^i}, \quad x = (x_i)$ is linear and bounded.

r. Sri Lanka.

- 4. State the Hahn-Banach theorem for a normed linear space.
 - (a) Let M be a proper closed subspace of a normed linear space X. Let $x_o \in X \setminus M$ and let $d = \inf\{\|x x_o\|: x \in M\}$. Show that there exists $f \in X^*$ (dual space of X) such that $f(x_o) = 1$, $\|f\| = \frac{1}{d}$ and f = 0 on M. Hence show that if $X \neq \{0\}$, then for every $x \in X$, there exists $g \in X^*$ such that $g(x) = \|x\|$ and $\|g\| = 1$.
 - (b) Let X and Y be normed linear spaces with $X \neq \{0\}$. Show that if B[X, Y] is complete, then Y must be complete.