EASTERN UNIVERSITY, SRI LANKA ## THIRD EXAMINATION IN SCIENCE - 2008/2009 ## SECOND SEMESTER (Special Repeat) (January 2012) ## PH 305 FUNDAMENTALS OF STATISTICAL PHYSICS Time: 01 hour. Answer ALL Questions - 1. Specify macrostates and microstates in a statistical system. - Define *free energy* and outline the condition for thermodynamic equilibrium of a statistical system. The entropy of a system of N non-interacting classical particles having constant total energy is given by $S = k_{\rm B} \ln \left(N! \prod_{j=1}^n \frac{\left(g_j\right)^{N_j}}{N_j!} \right)$, where N_j is the number of particles in the j^{th} energy level E_j with degeneracy g_j . If the system is in thermodynamic equilibrium, derive an expression for the distribution function in the case of classical statistics. **2.** Outline the conditions for the three types of statistics used for classical and quantum systems. Give an example for each case. Consider a perfect gas of *N* free electrons in a solid of volume *V*, which obey the Fermi-Dirac distribution $f(E) = \frac{n(E)}{g(E)} = \frac{1}{\exp[(E - \mu)/k_B T] + 1}$, where the density of electron states is given by $g(E)=4\pi V \left(\frac{2m_e}{h^2}\right)^{3/2} E^{1/2}$ and the symbols have their usual meaning. Show that the Fermi energy at absolute zero (T=0) is given by $E_f=\frac{h^2}{8m_e}\left(\frac{3N}{\pi V}\right)^{2/3}$. Find the Fermi energy in copper on the assumption that each copper atom contributes one free electron to the electron gas. The density of copper is 8.94×10^3 kg m⁻³ and its atomic mass is 63.5 a.m.u. The following values may be useful: Avergadro number 6.023×10^{23} mol⁻¹, Plank's constant (h) = 6.64×10^{-34} J s and mass of electron (m_e)= 9.1×10^{-31} kg.