

Answer all questions.

Time: 01 Hour

1. (i) Define the following terms:

(a) Molar conductivity

(b) Mobility

(c) Flux

Show that $\lambda/\lambda^{\infty} = \alpha$ for a weak electrolyte.

(λ - Molar conductivity, λ^{∞} molar conductivity at infinite dilution and α - dissociation constant of the weak acid)

(ii) Conductivity of a saturated aqueous solution of silver chloride is 1.980 x 10⁻⁴ Sm⁻¹. If the conductivity of the water used to prepare the solution is 1.78 x 10⁻⁵ Sm⁻¹, calculate

(a) the solubility

(b) the solubility product of silver chloride.

 λ^{∞} for Ag⁺ and Cl⁻ are 6.35 x 10⁻³ Sm²mol⁻¹ and 7.55 x 10⁻³ Sm²mol⁻¹ respectively. All data are at 25°C.

2. (a) i) Briefly describe how you can determine ionic product of water.

- ii) If the conductivity of pure water is 5.5 x $10^{-6} \Omega^{-1} \text{ m}^{-1}$, determine the ionic product of water at 298 K. The molar conductivities (in Ω⁻¹ m² mol⁻¹) of NaOH, HCl and NaCl are 0.02484, 0.04262 and 0.01265 respectively at infinite dilution.
- (b) Calculate the potential difference between hydrogen electrodes in the following cell at 298 K. The activity coefficients of 0.01 M and 0.1 M HCl solutions in the cell are 0.95 and 0.85 respectively.

Pt / H₂(g), HCl / AgCl(s), Ag // Ag, AgCl(s)/ HCl, H₂(g)/Pt $(c_2 = 0.1)$ (1 atm) $(1 \text{ atm}) (c_1 = 0.01)$