

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE, (2002/2003)

(June/July, 2003)

REPEAT

FIRST SEMESTER MT 302 - COMPLEX ANALYSIS

Answer all questions

Time allowed: 3 Hours

- Q1. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \to \mathbb{C}$. Define what is meant by f being analytic at $z_0 \in A$. [20]
 - (b) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \to \mathbb{C}$ be differentiable at some $z_0 = x_0 + i y_0 \in A$. If f(z) = u(x, y) + i v(x, y), then prove that
 - (i) u(x, y) and v(x, y) have partial derivatives at $z_0 = x_0 + i y_0$ that satisfy the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

[50]

(c) Obtain a harmonic conjugate v(x, y) of a harmonic function $u(x, y) = y^3 - 3x^2y$ such that f(z) = u(x, y) + iv(x, y) is analytic.

[30]

- Q2. (a) For a path γ and a continuous function $f: \gamma \to \mathbb{C}$, define $\int_{\gamma} f(z) dz$.
 - (b) Let γ be a path and let f be a continuous function on γ . If $M \geq 0$ such that $|f(z)| \leq M$ for all $z \in \gamma$, then prove that

$$\left| \int_{\gamma} f(z) \, dz \right| \le ML,$$

where $L := length(\gamma)$. Hence show that

[50]

$$\left| \int_{\gamma} \frac{z^{\frac{1}{2}}}{z^2 + 1} \, dz \right| \le \frac{3\sqrt{3}}{8} \pi,$$

where γ is the semi circular path given by $z = 3e^{i\theta}$, $\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$.

[30]

Q3. (a) State the Cauchy's Integral Formula. [30]

By using the Cauchy's Integral Formula compute the following integrals:

(i)
$$\int_{C(0;1)} \frac{1}{(z-\frac{1}{2})(z+2)^2} dz;$$
 [20]

(ii)
$$\int_{C(0;2)} \frac{\cos z}{(z^3 + 9z)} dz$$
, [20]

where C(a;r) denotes a positively oriented circle centre a with radius r.

(b) Prove the Mean Value Property for Analytic Functions: let f be analytic on a disc $D(a;r):=\{z\in\mathbb{C}:|z-a|< r\}$ and let $s\in(0,r)$. Then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + se^{it}) dt.$$

[30]

- Q4. (i) Define what is meant by the function $f: \mathbb{C} \to \mathbb{C}$ being entire.

 [20]
 - (ii) Prove Liouville's Theorem: if f is entire and

$$\frac{\max\{|f(t)|:|t|=r\}}{r}\to 0,\quad \text{as}\ \ r\to \infty,$$

then f is constant. [50] (You may assume any results without proof).

(c) State the Maximum-Modulus Theorm.

[30]

Q5. If f has a pole of order m at z_0 , then prove that the residue of f at z_0 denoted by $Res(f; z_0)$ and is given by

$$Res(f; z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)].$$

[60]

Hence evaluate the following integral

$$\int_C \frac{dz}{z^3(z+4)}$$

taken counterclockwise around the circle

- (i) |z| = 2; [20]
- (ii) |z+2|=3. [20]
- Q6. (a) State the Principle of the Argument theorem. [20]
 - (b) Prove Rouche's Theorem: let γ be a simple closed path in an open starset A. Suppose that
 - (i) f, g are analytic in A except for finitely many poles, none lying on γ .
 - (ii) f and f + g have finitely many zeros in A.
 - (iii) $|g(z)| < |f(z)|, z \in \gamma$. Then

$$ZP(f+g;\gamma) = ZP(f;\gamma)$$

where $ZP(f+g;\gamma)$ and $ZP(f;\gamma)$ denote the number of zeros – number of poles inside γ of f+g and f respectively, where each is counted as many times as its order. [40]

- (c) State the Fundamental theorem of Algebra. [20]
- (d) Prove that all 5 zeros of $P(z) = z^5 + 3z^3 + 1$ lie in |z| < 2. [20]