EASTERN UNIVERSITY, SRI LANAKA

SPECIAL DEGREE EXAMINATION IN MATHEMATICS (2001/2002)

(January / February 2004)

MT 406 - APPROXIMATION THEORY

ANSWER ALL QUESTIONS

TIME ALLOWED: 3 HOURS

LIBRAL!

Q1.

- (i) Given that a set K is convex if $f,g \in K$ and $0 \le \theta \le 1$ implies $\theta f + (1-\theta)g \in K$. Let X be a normed space and let $f \in X$ and r > 0. Show that the ball $K := \{g \in X : ||f-g|| \le r\}$ is convex. [15 marks]
- (ii) Let X be a normed space and let $K \subseteq X$ be convex. Show that the set of best of approximants to $f \in X$ from K is a convex set [15 marks]
- (iii) Define Uniform Convexity and Strict Convexity of a normed space and state which implies the other. [15 marks]
- (iv) Is C[-1, 1] uniformy convex? Justify your answer. [15 marks]
- (v) Prove that an (real) inner product space is uniformy convex. [20 marks]
- (vi) By means of an example, show that the uniform convexity is essential for uniqueness of best approximants [20 marks]

O2.

(a) Let [a,b] be given and let $x_0, x_1, ... x_n$ be distinct points in [a,b]. Let f be analytic inside and on some simple closed contour Γ containing [a,b]. Let H_n be the Hermite interpolation polynomial of degree $\leq 2n+1$, satisfying

$$H_n(x_j) = f(x_j); \quad H'_n(x_j) = f'(x_j), \qquad 0 \le j \le n$$

and let

$$W(x) := \prod_{j=0}^n (x - x_j).$$

Then show that

$$f(x) = H_n(x) + \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t - x} \left\{ \frac{W(x)}{W(t)} \right\}^2 dt, \text{ x inside } \Gamma.$$

(Hint: $f - H_n$ has double zeros at x_j , $0 \le j \le n$) [40 marks]

- (b) Define the n^{th} Bernstein polynomial $B_n[f]$. [5 marks]
- (i) Given that $f_i(x) = x^j$ for j = 0, 1, 2. Prove that

$$B_n[f_j](x) = f_j(x)$$
 for $j = 0, 1$ and $B_n[f_2](x) = f_2(x) + \frac{1}{n}(x - x^2)$.

[30 marks]

(ii) State Bohman-Korovkin theorem and use it to prove that there exists a sequence $\{P_n\}_{n=1}^{\infty}$ of polynomials such that $\lim_{n\to\infty} P_n = f$ for every $f \in C[0,1]$. Name the result. [25 marks]

Q3.

Let

$$(S_n f)(x) := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) \frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt$$

and define the Cesáro means (Fejer Operator) as

$$G_n f := \frac{1}{n} [S_0 f + S_1 f + \cdots S_{n-1} f].$$

(a) Prove that

$$(G_n f)(x) = \frac{1}{2n\pi} \int_{-\pi}^{\pi} f(t+x) \left(\frac{\sin\frac{1}{2}nt}{\sin\frac{t}{2}}\right)^2 dt$$

[35 marks]

- (b) Show that the Fejer operators G_n are monetone linear [20 marks]
- (c) Show that $G_n 1 \to 1$, $(G_n \cos)(x) \to \cos x$, and $(G_n \sin)(x) \to \sin x$ as $n \to \infty$ and hence show that the Fejer operators of the Fourier series of a continuous 2π -periodic function converge uniformly to the function [45 marks]

(Hint: Use the trigonometric analogue of Korovkin's theorem that is given as follows: Let $\{L_n\}$ denote a sequence of monotone linear operators on $C_{2\pi}$. In order that $L_n f \to f$ (uniformly) for all $f \in C_{2\pi}$, it is necessary and sufficient that such convergence occurs for f = 1, cos, and sin.)

Q4.

- (a) Define a Chebyshev system on a closed interval [a,b] and show that $\{e^{a_1x},e^{a_2x},...,e^{a_nx}\}$ is a Chebyshev system, where $a_1,a_2,...,a_n$ are distinct real numbers. [25 marks]
- (b) Chebyshev polynomial of degree n is defined as

$$T_n(x) := \cos(n\arccos x), \quad x \in [-1, 1], \quad n = 0, 1, 2, \dots$$

(i) Show that T_n satisfy the recurrence relation

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad n = 2, 3,$$

[25 marks]

- (ii) Use (i) above and induction hypothesis to show that T_n is an algebraic polynomial of degree n with leading coefficient 2^{n-1} , $n \ge 1$ [25 marks]
- (iii) Show that T_n satisfies the following differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0, \text{ where } y = T_n(x).$$

[25 marks]

TIRMO

Q5.

(a) If g is a trigonometric polynomial of degree $\leq n$ with only cosine terms, show that there exists an ordinary polynomial f(x) of degree $\leq n$ such that

$$g(\theta) = \cos \theta$$
.

[20 marks]

(b) Let $f \in C[-1, 1]$ and assume that for some $k \ge 1$, $f^{(k)} \in C[-1, 1]$ and $g(\theta) = f(\cos \theta)$, $\theta \in [0, 2\pi]$. Show the following:

(i)

$$\xi_n[g] = E_n[f], \quad n \ge 1;$$

[30 marks]

(ii)

$$E_n[f] \leq \frac{3}{2} \|f'\|_{[-1,1]} \frac{\pi}{n+1};$$

[25 marks]

(iii)

$$\xi_n[g] \le \left(\frac{3}{2}\right)^{k+1} \pi^k \frac{\omega(f^{(k)}; \frac{\pi}{n-k+1})}{(n+1)n(n-1)...(n-k+2)}$$
:

where $E_n[f]$, $\xi_n[f]$ denote the errors in approximation of f by an ordinary and trigonometric polynomial of degree $\leq n$ respectively and $\omega(f; \bullet)$ denotes the modulus of continuity. [25 marks]

(You may assume that $E_n[f] = E_n[f-P]$, for any ordinary polynomial of degree $\leq n$)

Q6.

- (a) In each of the following three inequalities, give the missing functions (in n) or (in n and x) that should appear in the following inequalities. Also name the inequalities. [30 marks]
- (i) For trigonometric polynomials of degree n

$$||R'||_{[0,2\pi]} \le ||R||_{[0,2\pi]}$$

(ii) For ordinary (algebraic) polynomials P of degree n

$$\|P'\|_{[-1,1]} \le \|P\|_{[-1,1]}$$

(iii) For ordinary (algebraic) polynomials P of degree n, and $x \in (-1, 1)$

$$|P'(x)| \le ||P||_{[-1,1]}$$

Give two trigonometric polynomials of degree n for which there equality in (i) and one algebraic polynomial of degree n for which there is equality in (ii) above. [15 marks]

- (b) Let $f \in C_{2\pi}$ and $0 < \alpha < 1$. Prove that the following are equivalent:
- (1) There exists A > 0 such that $\xi_n[f] \leq An^{-\alpha}$, $n \geq 1$.
- (II) There exists B > 0 such that $|f(x) f(y)| \le B|x y|^{\alpha}$, for $x, y \in [0, 2\pi]$. [30 marks]
- (c) Let $f(\theta) := |\theta|$, $\theta \in [-\pi, \pi]$ and extend f to R by 2π periodicity. Prove that there exists A > 0 such that

$$\xi_n[f] \leq An^{-1}, \quad n \geq 1.$$

but that if $\alpha > 1$, there does not exist A > 1 such that

$$\xi_n[f] \geq An^{-a}, \quad n \geq 1.$$

[25 marks]

(Here $\xi_n[f]$ denotes the error in approximation of f by a trigonometric polynomials of degree n and R denotes the set of real numbers)