

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF CHEMISTRY SECOND YEAR IN SCIENCE 2004/2005 (1ST SEMESTER) CH 201 CO-ORDINATION CHEMISTRY AND MAIN GROUP CHEMISTRY (Proper)

Answer All Ouestion

Time:01 hour

- 1)a) Give the molecular formulas of the following coordination compounds
 - i. dichlorobis(ethylenediamine)platinum(IV) chloride
 - ii. triamminetriaquachromium(III) chloride
 - iii. pentaamminechlorocobalt(III) chloride
 - iv. tetraammineaquacopper(II) sulfate
 - v. diamminesilver(I) dicyanoargentate(I)
 - b) Give the IUPAC name of the following coordination compounds
 - i. $(NH_4)_2[Ni(C_2O_4)_2(H_2O)_2]$
 - ii. [Co(H₂NCH₂CH₂NH₂)₃]₂(SO₄)₃
 - iii. K[Cr(oxal)₂(H₂O)₂] .3H₂O
 - iv. $K_4[Fe(CN)_6]$
 - v. Pt(NH₃)₂Cl₄
 - c) The hexaaquamanganese(II) ion contains five unpaired electrons, while the hexacyanomanganese(II)ion contains only one unpaired electron. Explain, using Crystal Field Theory.
 - d) Discuss the advantages and disadvantages of using Valence Bond Theory to explain bonding in coordination complexes.
- 2)a) Give the Oxidation State, d-orbital occupation, co-ordination number, shape of the complex and expected magnetic moment of the central metal ion in the following complexes.
 - (i) $K_3[Co(C_2O_4)_3]$
 - (ii) (NH₄)₂[CoF₄]
 - b) Identify the type of structural isomerism that is found in each of the following pairs of compounds.
 - (i) $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$
 - (ii) $[Cr(H_2O)_4Cl_2]Cl.2H_2O$ and $[Cr(H_2O)_5Cl]Cl_2.H_2O$
 - (iii) $[Fe(SCN)]^{2+}$ and $[Fe(CNS)]^{2+}$
 - c) i) Discuss the allotropic modification of phosphorous with their natural characteristics.
 - ii) Give four uses of phosphorus
 - d) Give a comparative account on Oxygen and Sulphur.