

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2004/2005) FIRST SEMESTER (Jan./ Feb., 2006)

MT 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time allowed: Three hours

- 1. (a) What is meant by a vector space?
 - (b) Let V be a vector space over the field F and W be a non-empty subset of V. Prove that W is a subspace of V if and only if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in F$.
 - (c) Let $V \times W$ be the Cartesian product of two vector spaces V and W. Define addition and scalar multiplication on $V \times W$ as follows:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), (v_i, w_i) \in V \times W, i = 1, 2;$$

 $\alpha(v, w) = (\alpha v, \alpha w), \alpha \in \mathbb{R}, (v, w) \in V \times W.$

Prove that, $V \times W$ is a vector space.

- (d) Let V be the vector space of all 2×2 matrices over the field \mathbb{R} . Verify whether the following set W is a subspace of V, where,
 - i. W consists of all matrices with zero determinant,
 - ii. W consists of all matrices A, for which $A^2 = A$.

- 2. (a) Define the following in a vector space V.
 - i. Span of S, where $S \subseteq V$,
 - ii. Direct sum of two subspaces S_1 and S_2 in V.
 - (b) Let V be vector space over the field F.
 - i. Let u_0 and v_0 be linearly independent vectors in V and let $u_1 = au_0 + bv_0$ and $v_1 = cu_0 + dv_0$, where $a, b, c, d \in F$. Show that u_1 and v_1 are linearly independent if and only if $ad bc \neq 0$.
 - ii. Show that, $S \cup \{v\}$ is linearly independent if and only if $v \notin \langle S \rangle$, where S is a linearly independent subset of V and $v \in V$.
 - (c) Let v_1 and v_2 belong to the vector space V over the field F. Show that;
 - i. $\langle \{v_1 + v_2, v_2\} \rangle = \langle \{v_1, v_2\} \rangle$,
 - ii. $\langle \{v_1 + v_2, v_1 v_2\} \rangle = \langle \{v_1, v_2\} \rangle$, if $F = \mathbb{Q}$, a set of rational numbers.
 - (d) Let V be the vector space of n-square matrices over the field \mathbb{R} . Let U and W be the subspaces of symmetric and antisymmetric matrices, respectively. Show that $V = U \oplus W$.
- 3. (a) Suppose $\{v_1, v_2, \dots, v_n\}$ generates a vector space V. If $\{w_1, w_2, \dots, w_m\}$ is linearly independent then prove that $m \leq n$ and V is generated by a set of the form $\{w_1, w_2, \dots, w_m, v_{i_1}, v_{i_2}, \dots, v_{i_{n-m}}\}$.
 - Use this result to prove, a linearly independent set which contains number of elements equal to the dimension of the vector space is a basis for that vector space.
 - (b) State the dimension theorem for two subspaces of a finite dimensional vector space V.
 - i. Let U_1 and U_2 be be subspaces of the vector space V. If $\dim U_1 = 3$, $\dim U_2 = 4$, $\dim V = 6$, show that $U_1 \cap U_2$ contains a non-zero vector. If $\dim U_1 = 2$, $\dim U_2 = 4$, $\dim V_1 = 6$ show that $U_1 + U_2 = V$ if and only if $U_1 \cap U_2 = \{0\}$.

- ii. Let U_1 and U_2 be distinct (n-1)-dimensional subspaces of a n-dimensional vector space V. Show that $\dim(U_1 \cap U_2) = n 2$. If U_1, U_2, \dots, U_t are (n-1)-dimensional subspaces of V, prove that $\dim(U_1 \cap U_2 \dots \cap U_t) \geq n-t$.
- 4. Define the term "non-singular matrix".
 - (a) The $m \times m$, $n \times n$, $m \times n$ matrices P, Q, A over the field F are placed together as shown to form the $(m+n) \times (m+n)$ matrix

$$X = \begin{pmatrix} P & A \\ O & Q \end{pmatrix}$$
, where O denotes the $n \times m$ zero matrix. Show that X is non-singular if and only if P and Q are non-singular, in which case

$$X^{-1} = \begin{pmatrix} P^{-1} & -P^{-1}AQ^{-1} \\ O & Q^{-1} \end{pmatrix}.$$

(b) Show that a matrix over F of the form

$$\begin{pmatrix} P & O & O \\ A & Q & O \\ B & C & R \end{pmatrix}, \text{ where } P, \bar{Q}, R \text{ are non-singular,}$$

is itself non-singular and express its inverse in a similar (partitioned) form.

(c) i. Show that the 3×3 matrix A over the field F commutes with

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 if and only if $A = aI + bB + cB^2$, where $a, b, c \in F$ and

I is the identity matrix of order 3.

- ii. Let $A = (a_{ij})$ be a diagonal $n \times n$ matrix over F with n distinct diagonal entries a_{ii} . Show that the $n \times n$ matrix B over F commutes with A if and only if B is diagonal.
- 5. (a) Let T be a linear transformation from a vector space V into another vector space W. Define
 - i. range space R(T) and
 - ii. null space N(T).
 - (b) Let V be a vector space with finite dimension, and let $T:V\to U$ be a linear transformation with range U' and kernel W. Prove that dim U'+ dim W =dim V.

(c) Let V and V' be vector spaces over the field F. Let V has basis $\{v_1, v_2, \cdots, v_m\}$ and let $\{v'_1, v'_2, \cdots, v'_m\}$ be any vectors in V'. Then prove that there is a unique linear transformation $T: V \to V'$ such that

 $T(v_1) = v_1', T(v_2) = v_2', \dots, T(v_m) = v_m'$. Further prove that T is injective if and only if $\{v_1', v_2', \dots, v_m'\}$ is linearly independent.

3. (a) Let $A = (a_{ij})$ be an $n \times n$ matrix. Define adjoint of A. Prove that A, adjA = adjA, A = (detA).I, where I is the $n \times n$ identity matrix.

i.
$$adj(adj A) = (det A)^{n-2}$$

ii.
$$adj(adj(adj A)) = (det A)^{n^2 - 3n + 3}$$

If A is a non-singular matrix, then show that

(b) Consider a system of linear equations with the same number of equations as unknowns.

- i. Suppose that associated homogeneous system has only the zero solution. Show that this system has a unique solution for every choice of constants b_i .
- ii. Suppose that associated homogeneous system has a non-zero solution. Show that there are constants b_i for which this system does not have a solution. Also show that if system has a solution, then it has more than one.