EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2004/2005 FIRST SEMESTER - JANUARY/FEBRUARY 2006

PH 202 - ELECTRONICS I

ow a translationin substituted with B = (50 into the current. Find the

our sens costone recommission is guived ned mathematic works. A

to valided oil II and ⁶⁵01 noticination a lo suindigeoig diew begob

Answer ALL questions.

Time: One hour

Q1. Describe the action of a bipolar junction transistor.

Sketch and explain the input and output characteristics curves of a transistor.

A silicon transistor is used in the self biasing arrangement as shown in the diagram below with V_{CC} = +20V, V_{BE} = 0.7 V, R_1 = 80 k Ω , R_2 = 20 k Ω , R_3 = 50 k Ω , R_4 = 20 k Ω , R_5 = 60 k Ω and β = 100. Compute the collector current Ic.

Now a transistor is substituted with $\beta = 150$ into the current. Find the percentage change in I_C

- Q2. By explaining the meaning of intrinsic semiconductors discuss how an intrinsic semiconductor, for example pure silicon, may be converted into
 - (a) an N-type semiconductor
 - (b) a P type semiconductor and

briefly explain the mechanism of electrical conduction in the above two cases.

A narrow germanium bar having a circular cross section area measuring 1 mm diameter is doped with phosphorus of a concentration 10^{20} cm⁻³. If the mobility of the electron in germanium is $3600 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ and $e = 1.6 \times 10^{-19} \text{ C}$, calculate

- (a) the resistivity of the doped semiconductor, and
- (b) the length of the bar to provide a total resistance of 5 k Ω .