

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE 2005/2006

August/September' 2007 FIRST SEMESTER MT 304 - GENERAL TOPOLOGY

Proper & Repeat

Answer all questions

Time:Two hours

Q1. (a) Define the following terms:

- i. Topology on a set;
- ii. Closure of a set.

[20 marks]

- (b) Let X be a non-empty infinite set and let τ be the family consisting of ϕ and all subsets of X whose complements are finite. Prove that τ is a topology on X. [30 marks]
- (c) Let (X, τ) be a topological space and let $A, B, C \subseteq X$. Define $Fr(M) = \overline{M} \setminus M^o$ for any subset M of X. Prove that
 - i. If B is closed then $Fr(B) \subseteq B$.
 - ii. The set B is both open and closed if and only if $Fr(B) = \phi$.
 - iii. $\bar{A} = Fr(A) \cup A$.

[35 marks]

(d) Is the union of two topologies on a set X again a topology? Justify your answer. [15 marks]

ii. Disconnected set. (b) Let \mathbb{B} be a class of subsets of a non-empty set X. Prove that \mathbb{B} is a base some topology τ on X if and only if it satisfies the following properties: i. $X = \bigcup_{i \in I} B_i, \quad B_i \in \mathbb{B};$ ii. For any $B_{\alpha}, B_{\beta} \in \mathbb{B}$, $B_{\alpha} \cap B_{\beta} = \bigcup_{i \in I} B_i$, that is, $B_{\alpha} \cap B_{\beta}$ is the union of members of \mathbb{B} . $35 \, \mathrm{m}$ (c) Prove that a topological space (X, τ) is disconnected if and only if there ex non empty proper subset of X, which is both open and closed. (d) Let (X, τ_X) and (Y, τ_Y) be two topological spaces and let $f: X \to Y$ continuous function. Prove that if $A \subseteq X$ is connected, then the image of connected. 25 m (a) Define the following in a topological space (X, τ) : i. Compact set; ii. Sequentially compact set. [20 n (b) Let (X, τ) be a topological space and let (Y, τ_Y) be its subspace. Prove the is compact in (Y, τ_Y) if and only if A is compact in (X, τ) . 25 m (c) Prove that continuous image of a compact set is compact. 15 m (d) Let A, B be two compact sets in a topological space (X, τ) . Show that Acompact. 20 m (e) Is A = (0, 1) on the real line $\mathbb R$ with usual topology compact? Justify you swer. 20 m Q4.(a) Define the Frechet space and the Hausdorff space. 15 m (b) Let (X, τ_1) and (Y, τ_2) be two topological spaces and let $f: X \to Y$. Show f is continuous on $A \subseteq X$ if and only if $f(A) \subseteq \overline{f(A)}$. 30 m (c) Prove that every Hausdorff space is Frechet space. Is the converse true? Justify your answer. 25 n

Q2. (a) Define the following in a topological space (X, τ) :

i. Base:

(d) Prove that a topological space is a Frechet space if only if every singleton subset of X is closed. [30 marks]

