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1. (a) Let Y be a negative binomial random variable with parameters
r and p and its probability mass function be given by,
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Find
i. the expected value of Y |
ii. the variance of Y ,
iii. the moment generating function of Y .
(b) Let X be a random variable having Gamma distribution with
density function:
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where n and A are parameters.
Find
i. the expected value of X ,

ii. the variance of X .



2.

(a)
(b)

(c)

State and prove the Baye’s theorem.

Three machines A, B and C produce, respectively, 40%, 10% and
50% of the items in a factory. The percentage of defective items
produced by the machines are, respectively, 2%, 3% and 4%. An
item from the factory is selected at random. If the selected item
is defective, find the probability that the item was produced by

machine C.

Let X;, X5, ..., Xn be independent random samples from normal

opulation with mean i and variance o?. Show that
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iii. Let X and Y be independent random variables. X has the
gamma distribution with parameters m and A and Y has
the gamma distribution with parameters n and X . Show
that X + Y has the gamma distribution with parameters

(m+n) and A.

Determine the maximum likelihood estimators of the parameters

of the following distributions:
i. Geometric population with parameter p .
ii. Exponential population with mean 0 .

If X is a random variable having a Binomial distribution with

the parameters n and 6 then show that the moment generat-
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normal distribution when n — oo.

ing function of 7 = approaches that of the standard




(a) A random sample X, Xo, ..., X, is obtained from ¢ distribution '
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with probability density function,
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where o and § are unknown parameters. Estimate o« and

f# by using the method of moments.

(b) Show that if X is a random variable having the Poisson dis-
tribution with the parameter A and A — oo, then the moment
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generating function of Z = T approaches the moment gener-

ating function of the standard normal distribution.




