EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE-2003/2004

(June/July'2005)

SECOND SEMESTER

REPEAT

MT 306- PROBABILITY THEORY

Answer all questions

Time: Two hours

1. (a) Let Y be a negative binomial random variable with parameters r and p and its probability mass function be given by,

$$P(Y=y) = \begin{cases} \begin{pmatrix} y-1 \\ r-1 \end{pmatrix} p^r q^{y-r} & ; \quad y=r,r+1,r+2,..., \\ 0 & \text{otherwise} \end{cases}$$

Find

- i. the expected value of Y,
- ii. the variance of Y,
- iii. the moment generating function of Y.
- (b) Let X be a random variable having Gamma distribution with density function:

$$f(x) = \begin{cases} \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)} & ; & x \ge 0\\ 0 & ; & \text{otherwise} \end{cases}$$

where n and λ are parameters.

Find

- i. the expected value of X,
- ii. the variance of X.

- 2. (a) State and prove the Baye's theorem.
 - (b) Three machines A, B and C produce, respectively, 40%, 10% and 50% of the items in a factory. The percentage of defective items produced by the machines are, respectively, 2%, 3% and 4%. An item from the factory is selected at random. If the selected item is defective, find the probability that the item was produced by machine C.
 - (c) Let $X_1, X_2, ..., X_n$ be independent random samples from normal population with mean μ and variance σ^2 . Show that,
 - i. the statistic $\hat{\mu} = \frac{1}{n+1} \sum_{i=1}^{n} X_i$ is biased for μ .
 - ii. $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is an unbiased estimator for σ^2 .
 - iii. Let X and Y be independent random variables. X has the gamma distribution with parameters m and λ and Y has the gamma distribution with parameters n and λ . Show that X+Y has the gamma distribution with parameters (m+n) and λ .
- 3. (a) Determine the maximum likelihood estimators of the parameters of the following distributions:
 - i. Geometric population with parameter p.
 - ii. Exponential population with mean θ .
 - (b) If X is a random variable having a Binomial distribution with the parameters n and θ then show that the moment generating function of $Z = \frac{X n\theta}{\sqrt{n\theta(1-\theta)}}$ approaches that of the standard normal distribution when $n \to \infty$.

4. (a) A random sample $X_1, X_2, ..., X_n$ is obtained from a distribution of 2005 with probability density function,

$$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$$
; $0 \le x < \infty$,

where α and β are unknown parameters. Estimate α and β by using the method of moments.

(b) Show that if X is a random variable having the Poisson distribution with the parameter λ and $\lambda \to \infty$, then the moment generating function of $Z = \frac{X - \lambda}{\sqrt{\lambda}}$ approaches the moment generating function of the standard normal distribution.