EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2003/2004

SECOND SEMESTER

(June/July 2005)

PH 304 CONDENSED STATE PHYSICS

see a and I are parameters.

Time: 01 hour.

Answer ALL Questions

- 1. (a) Illustrate face centered cubic (fcc) crystal structure. Determine the following for this crystal structure of lattice constant $2.4A^0$.
 - (i) Nearest neighbor distance.
 - (ii) The volume of the primitive cell of this lattice.
 - (iii) If atomic weight of the crystal is 24g the density of the crystal (assume Avagadro's number $6 \times 10^{23} per\ mole$).
 - (b) Explain what is meant by packing fraction of the structures made of identical hard spheres. The cube edge of the Diamond crystal structure is $3.56A^0$. Calculate
 - (i) atomic radius.
 - (ii) packing fraction of the crystal.
- 2. Show that for a cubic lattice with lattice constant a the distance between the (hkl) planes is

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Write down the Bragg's Law for crystal diffraction on (hkl) plane.

Aluminium has face centered cubic structure and the spacing of its (100) plane is $4.05A^0$. The X-Ray line radiation of wavelength $1.537A^0$ is incident on an Aluminium crystal and produces a diffracted beam of the (111) plane at a Bragg angle of 19.2^0 . Determine the following.

- (i) the cube edge of the Aluminium
- (ii) the order of diffraction
- (iii) the Avagadro's number

You may assume the following. the atomic weight of Aluminium = 27g the density of Aluminium = $2.7 \times 10^3 kgm^{-3}$