EASTERN UNIVERSITY SRI, LANKA DEPARTMENT OF CHEMISTRY THIRD YEAR IN SCIENCE FIRST SEMESTER -2004/2005 CH 303: ELECTROCHEMISTRY (Proper)

Time: 1 Hour

(F= 96485 C; 2.303 RT/F= 0.059)

Answer all questions.

- 1. a) Write down the Debye-Huckel equation for the mean activity coefficient of electrolytes and identify the terms in it.
 - b) A solution contains 0.005, 0.01 and 0.005 mol kg⁻¹ NaCl, MgCl₂ and K₃[Fe(CN)₆]respectively, calculate the ionic strength of the solution and the mean activity coefficient of the electrolyte K₃[Fe(CN)₆] in the solution.
 - c) The resistance of a 0.01 M solution of acetic acid when measured in a cell of cell constant 0.20 cm⁻¹ was found to be 760 Ω at 25°C. The limiting molar conductivity of CH₃COONa, HCl and NaCl at the same temperature are 91.0, 425.0 and 128.0 Scm²mol⁻¹ respectively. Calculate the degree of dissociation of acetic acid.
- 2. a) Pb/PbCl₂(s)/ KCl / AgCl(s) / Ag(s)

 The emf of the above is given by the equation, $E = 8.23 \times 10^{-5} \text{ T} + 1.74 \times 10^{-7} \text{ (T}^2 25) \text{ where T is the temperature in K. Write down}$ the cell reaction and calculate ΔG , ΔH and ΔS for the reaction occurring in the cell at 2.5° C.

b) (i) Define the term transport number of an ion.

(ii) In a Hittorf experiment a CdI₂ solution containing 0.2763 g CdI₂ per gram of solution was electrolysed using Pt electrodes. During the electrolysis 0.3462 g of Cd was deposited in the cathode. After electrolysis the mass of anode solution was found to be 1.5264 g. and analysis showed that it contained 0.3718 g of CdI₂. Calculate the transport number of Cd²⁺ ion and I ions (Cd =112.5g and I= 127 g).
