

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2003/2004 SECOND SEMESTER (Apr.'2006)

MT 303 - FUNCTIONAL ANALYSIS REPEAT

Answer all questions

Time allowed: Two hours

- 1. Define the term "Banach space".
 - (a) Show that the sequence space

$$l^{\infty} = \{ x = (x_i) ; x_i \in \mathbb{C}, \sup_{i \in \mathbb{N}} |x_i| < \infty \}$$

with the norm defined by $||x|| = \sup_{i \in \mathbb{N}} |x_i|$ is a Banach space.

(b) Show with the usual notation that $(e_i)_{i=1}^{\infty}$ is a Schauder basis for C_0 , where

$$C_0 = \{x = (x_i) : x_i \in \mathbb{C}, (x_i) \text{ converges to zero }\}$$
 with the norm

$$||x|| = \sup_{i \in \mathbb{N}} |x_i|.$$

2. If $\{x_1, x_2, ..., x_n\}$ is a linearly independent set of vectors in a normed linear space X, there is a number c > 0 such that

$$\|\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n\| \ge c(|\beta_1| + |\beta_2| + \dots + |\beta_n|)$$

for every choice of scalars $\beta_1, \beta_2, ..., \beta_n$. Use this result to prove the following:

- (a) prove that every finite dimensional subspace Y of X is complete and closed,
- (b) prove that any two norms on a finite dimensional linear space are equivalent.
- 3. Define the term "bounded linear operator" from a normed linear space into another normed linear space.
 - (a) Let $T: X \to Y$ be a linear operator, where X and Y are normed linear spaces. Prove that T is continuous if and only if T is bounded.
 - (b) If T is a linear operator from a normed linear space X onto a normed linear space Y, then show that the inverse operator $T^{-1}:Y\to X$ exists and is bounded linear if and only if there exists k>0 such that $\|Tx\|\geq k\|x\|$ forall $x\in X$.
 - 4. State the Hahn Banach theorem for normed linear spaces.
 - (a) Let X be a normed linear space and let $x_0 \neq 0$ be any element of X. Prove that there exists a bounded linear functional f^* on X such that $||f^*|| = 1$ and $f^*(x_0) = ||x_0||$.

Further, Prove that, if f(x) = f(y) for every bounded linear functional f on X then x = y.

(b) Let Y be a proper closed subspace of a norm linear space X. Let $x_0 \in X \setminus Y$ and $\delta = \inf_{y \in Y} ||y - x_0||$. Show that there exists a bounded linear function F on X such that ||F|| = 1, $F(y) = 0 \quad \forall y \in Y$ and $F(x_0) = \delta$.