

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2003/2004 SECOND SEMESTER (Apr.'2006)

MT 301 - GROUP THEORY REPEAT

Answer all questions

Time allowed: Three hours

- 1. (a) Define the following terms:
 - i. group and,
 - ii. subgroup of a group.
 - (b) Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if $ab^{-1} \in H$, $\forall a, b \in H$.
 - (c) Let H and K be subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.
 - (d) Let H and K be two subgroups of a group G. Is it true that $H \cup K$ is a subgroup of G? Justify your answer.
 - (e) Let $\{H_{\alpha}\}_{{\alpha}\in I}$ be an arbitrary family of subgroups of a group G. Prove that $\bigcap_{{\alpha}\in I} H_{\alpha}$ is a subgroup of G.

- 2. State and prove Lagrange's theorem for a finite group G.
 - (a) Let H and K be two different subgroups of a group G with order p, where p is prime. Prove that $H \cap K = \{e\}$, where e is the identity element of G.
 - (b) Let x and y be elements of a finite group G. Show that the element $x^{-1}yx$ has the same order as y.
 - (c) If every non-identity element of a group G has order 2, show that G is abelian.
 - 3. (a) State and prove the first isomorphism theorem .
 - (b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that
 - i. $K \triangleleft H$;
 - ii. $H/K \subseteq G/K$;
 - iii. $\frac{G/K}{H/K} \cong G/H$.
 - 4. Prove or disprove the following:
 - (a) Let G be a group and Z(G) be the centre of G. If $\frac{G}{Z(G)}$ is cyclic then G is abelian.
 - (b) If G is a finite group then O(ab) = O(ba) for all $a, b \in G$. (O(x) stands for the order of the element x.)
 - (c) Every abelian group is cyclic.
 - (d) Let $\Phi: G \to G_1$ be a homomorphism, where G and G_1 are two groups. If H is a normal subgroup of G then $\Phi(H)$ is a normal subgroup of G_1 .
 - (e) Homomorphic image of a p-group is p-group.

5. (a) Define the term "p-group".

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.

- (b) Let G' be the commutator subgroup of a group G. Prove the following:
 - i. G is abelian if and only if $G' = \{e\}$, where e is the identity element of G.
 - ii. G' is a normal subgroup of G.
 - iii. $\frac{G}{G}$ is abelian.
- 6. Define the following terms:
 - * homomorphism
 - * isomorphism
 - * automorphism and inner automorphism.
 - (a) Prove the following:
 - i. homomorphic image of an abelian group is abelian.
 - ii. homomorphic image of a cyclic group is cyclic.
 - (b) Let AutG be the set of all automorphisms of a group G and let InnG be the set of all inner automorphisms of G. Show that,
 - i. AutG is a group under composition of maps.
 - ii. InnG is a normal subgroup of AutG.