

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2007/2008 FIRST SEMESTER(Dec./Jan.,2008/2009) MT 207 - NUMERICAL ANALYSIS (PROPER & REPEAT)

Answer all Questions

Calculators are provided

Time: Two hours

Q1. (a) Define the term "relative round - off error" in the floating point number system. Show that

$$|\delta x| \le \frac{1}{2} \,\beta^{1-t},$$

where δx represents the relative round - off error obtained by rounding a number in the floating point number system, is held for a β -base computer with tdigits in the mantissa.

Hence, find the absolute value of the error bound for a decimal computer with ten digits in the mantissa.

(b) Compare the results of P(2.19) and Q(2.19) using three-digit rounding arithmetic, where

$$P(x) = ((x^3 - 3x^2) + 3x) - 1,$$

$$Q(x) = ((x - 3)x + 3)x - 1,$$

and the true values of P(2.19) and Q(2.19) are the same and it is 1.685159. State the significance of this problem. Q2. Let x = g(x) be an arrangement of the equation f(x) = 0, which has a root α is DOS HAL BY the interval I. If g'(x) exists and continuous in I satisfying

$$|g'(x)| \le h < 1, \ \forall x \in I,$$

prove that, for any given x_0 , the sequence $\{x_r\}, r = 0, 1, 2, \ldots$, defined by

$$x_{r+1} = g(x_r)$$

converges to the root α and such α is unique.

Hence, find the condition for the convergence of Newton-Raphson method.

Furthermore, show that the convergence of the method described above depend on the choice of g(x) by considering the equation

$$f(x) = x - e^{-x}$$

with an approximate root 0.567.

(a) If $f \in C^{n+1}[a, b]$ and p_n is the Lagrange's interpolating polynomial which Q3. interpolates the function f(x) at the distinct points $x_0, x_1, \ldots x_n$ in [a,b], prove that for all $x \in [a, b]$, there exists $\xi \in (a, b)$ such that the error, $R_n(x)$, in interpolation is

$$R_n(x) = \frac{\prod_{n+1}(x)}{(n+1)!} f^{n+1}(\xi)$$

where $a < \xi < b$ and $\prod_{n+1} (x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n)$.

Hence, if the function $f(x) = \ln x$ is interpolated by a polynomial of degree two, in the interval [2,3] with step length 0.5, show that

$$|R_2(x)| \leq 0.00175$$
,

at $x = 2.7^{\circ}$

(b) With the usual notations, write down the formulas for finding the integral

$$I = \int_{x_0}^{x_n} f(x) \, dx,$$

truncation error and round-off error for the composite Trapezoidal rule.

Calculate a value for the step length h which will ensure that the truncation error in the composite Trapezoidal rule approximation to the integral

$$I = \int_1^2 \frac{1}{x} \, dx$$

is at most 10^{-2} in absolute value. Further, find the round-off error and hence compute an estimation of I which is correct to this accuracy.

- Q4. (a) What is meant by a linear system of equations $A\underline{x} = \underline{b}$ is "ill-conditioned" and "well-conditioned"?
 - (b) By finding the condition number, check whether the system given below is ill-conditioned

$$\begin{array}{rcl} -0.6x_1 + 0.6x_2 &=& 1.25,\\ 0.4x_1 + 0.2x_2 &=& 2.75. \end{array}$$

You may use an Euclidean norm which is defined by $\|.\|_2 = \sqrt{\sum_{ij} |a_{ij}|^2}$.

(c) Consider the following system of linear equations:

$$83x_1 + 11x_2 - 4x_3 = 95,$$

$$7x_1 + 52x_2 + 13x_3 = 104,$$

$$3x_1 + 8x_2 + 29x_3 = 71.$$

Is this system convergent for Gauss-Seidel method? If so, apply this method to carry out three iterations for x_1, x_2 and x_3 correct to four decimal places.