EASETRN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE -SPECIAL REPEAT FIRST SEMESTER 2004-2005 (DECEMBER 2006) ## **CH 303 ELECTROCHEMISTRY** Time allowed: ONE Hour Candidate must NOT start writing their answers until told to do so 1. (a) Explain the shape of the following (variation of molar conductivity (π) vs dilution) curve for strong and a weak electrolyte. - (b) How can you determine molar conductivity at infinite dilution (Λ^α) of CH₃COOH by using known values of Λ^α of strong electrolyte? (molar conductivity of NaCl, HCl and CH₃COONa are 126.4 x 10⁻⁴, 426.1 x 10⁻⁴ and 9 10⁻⁴ Ω⁻¹m⁻²mol⁻¹ respectively) - (c) Conductivity of a saturated aqueous solution of silver chloride is 1.980 X 10⁻⁴ Sm⁻¹. I conductivity of the water used to prepare the solution is 1.78 X 10⁻⁵ Sm⁻¹, calculate (i) the solubility (ii) the solubility product of silver chloride . λ[∞] for Ag⁺ and Cl⁻ are 6.35 X 10⁻³ Sm²mol⁻¹ and 7.55 X 10⁻³ Sm²mol⁻¹ respectively. All are at 25⁰C. - 2. (a) Calculate the molar conductivity of sodium sulphate solution at infinite dilution. $(\Lambda^{\alpha}_{Na}{}^{+}=0.502 \times 10^{-2} \, \Omega^{-1} \text{m}^{2} \text{mol}^{-1}, \, \Lambda^{\alpha}_{1/2 \, \text{SO4}}{}^{2-}=0.800 \times 10^{-2} \, \Omega^{-1} \text{m}^{2} \text{mol}^{-1})$ - (b) Calculate the potential difference between hydrogen electrodes in the following cell at 2981 The activity coefficients of 0.01 m and 0.1 m HCl solutions in the cell are 0.95 and 0.85 respectively. $$Pt / H_2(g)$$, $HCl / AgCl(s)Ag // Ag$, $AgCl(s) HCl$, $H_2(g)/Pt$ (1 atm ($c_1 = 0.01$) ($c_2 = 0.1$) (1 atm) End.