EASTERN UNIVERSITY OF SRI LANKA

SPECIAL DEGREE EXAMINATION IN SCIENCE(Part II) 2006

PH 415: Particle Physics

Answer all questions.

Time: Two Hours

Mass of proton = 940 MeV/c^2 Mass of neutron = 940 MeV/c^2 Mass of electron = 0.50 MeV/c^2 Electron charge = $1.6 \times 10^{-19} \text{ C}$ Velocity of light = $3.0 \times 10^{8} \text{ ms}^{-1}$

(1). Discuss the principles of operation of a Cyclotron and its limitations in accelerating charged particles to very high energies. Explain how the energy limitation of cyclotron may be removed by modulating the frequency of the accelerating field.

A cyclotron machine which is used to accelerate protons, has a uniform magnetic field of 1.0T and a radius of 0.25m. In this machine protons make 250 revolutions before they emerge and receive equal acceleration each time when they cross the accelerating gap. Estimate the following:

- (i) The energy of the protons when they emerge.
- (ii) The frequency and the voltage of the accelerating potential.
- (2) In a proton- neutron collision event a new particle, say X, was created along with two proton.
 - (a) Write down the particle reaction for the above collision event.
 - (b) Identify the baryon number B, electric charge Q, third component of the Isospin I₃, Isospin and strangeness S of the particle X.
 - (c) Give possible quarks content of the particle X.
 - (d) Another experiment predicts that the mass of the particle X is 140 MeV/ c². Estimate the minimum kinetic energy of the incident proton required to produce the above reaction in a laboratory. Assume that the neutron is at rest in the laboratory.
 - (e) Give the decay mode of particle X.

(a) Give the charge Q, baryon number B, isospin, I, third component of the isospin, I₃ and strangeness, S_of u, d and s quarks.

(b) Determine the charge, baryon number, isospin, third component of the isospin and strangeness of particles having the following quark structure:

iii. ud

iv. ds

V. USS

vi. sss

(c) Write down the expression relating

(i) the hypercharge, Y to S and B

(ii) the charge Q to I₃ and Y of particles. What value does the hypercharge take for strange quark.

(d) The lowest lying baryons with spin-parity state of $\frac{1}{2}^+$ are $p, n, \Xi^-, \Xi^0, \Lambda^0, \Sigma^0, \Sigma^+$ and Σ^- . Identify Y and I₃ of these baryons and arrange them in a diagram according to their value of Y and I₃.

(e) Deduce the relationship $2m_N + 2m_{\Xi} = 3m_{\Lambda} + m_{\Sigma}$ for the masses of the members of the baryon octet with $\frac{1}{2}^+$, where the symbols have their usual meaning.

You may find the Gell-Mann-Okubo mass formula,

 $m = m_0 + m_1 Y + m_2 \left\{ I(I+1) - \frac{1}{4} Y^2 \right\}$ with usual notation useful.

4. Giving reasons classify the following processes as strong, electromagnetic, weak or totally forbidden .

(a)
$$\Sigma^+ + n \rightarrow \Sigma^- + p$$

(b)
$$\pi^- + p \rightarrow \kappa^0 + \Lambda^0$$

(c)
$$\Sigma^0 \to \Lambda^0 + \gamma$$

(d)
$$\Lambda^0 \to p + \pi^-$$

, Draw Feynman diagrams for the processes (b) and (d).