

DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2008/2009

SECOND SEMESTER (Sep./Nov., 2010)

MT301 - GROUP THEORY

(PROPER & REPEAT)

Answer all questions

Time: Three hours

- 1. (a) Define the term group.
 - (b) Let p be a fixed positive prime and $G = \{1, 2, ..., p-1\}$. If the binary operation of multiplication modulo p, denoted by \mathfrak{O}_p , is defined on G, show that (G, \mathfrak{O}_p) is a group
 - (c) i. Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if $ab^{-1} \in H$, $\forall a, b \in H$.
 - ii. Let H and K be two subgroups of a group G. Is $H \cup K$ a subgroup of G? Justify your answer.
 - iii. Let $\{H_{\alpha}\}_{{\alpha}\in I}$ be an arbitrary family of subgroups of a group G. Prove that $\bigcap_{{\alpha}\in I} H_{\alpha}$ is a subgroup of G.

- (a) State and prove the Lagrange's theorem for a finite group G.
 Let G be a group and let H and K be subgroups of G such that |H| = 12 and |K| = 5. Prove that H ∩ K = {e}, where e is the identity element of G.
 - (b) Let G' be the commutator subgroup of G. Prove the followings:
 - i. G is abelian if and only if $G' = \{e\}$, where e is the identity element of G.
 - ii. $G' \leq G$.
 - iii. Let F be the group of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, where $ad \neq 0$, under matrix multiplication. Show that F', the commutator subgroup of F, precisely the set of all matrices of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$.
- 3. (a) State and prove the first isomorphism theorem.
 - (b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that i. $K \leq H$;
 - ii. $H/K \leq G/K$;
 - iii. $\frac{G/K}{H/K} \cong G/H$.
- 4. (a) Let G be a group and $g_1, g_2 \in G$. Define a relation " \sim " on G by

$$g_1 \sim g_2 \Leftrightarrow \exists g \in G \text{ such that } g_2 = g^{-1} g_1 g.$$

Prove that " \sim " is an equivalence relation on G.

Given $a \in G$, let $\Gamma(a)$ be denote the equivalence class containing a. Show that:

- i. $|\Gamma(a)| = |G:C(a)|$, where $C(a) = \{x \in G/ax = xa\}$;
 - ii. $a \in Z(G) \Leftrightarrow \Gamma(a) = \{a\}$, where Z(G) is the center of the group G.
 - (b) Write down the class equation of a finite group G. Hence or otherwise, prove that the center of G is non-trival if the order of G is p^n , where p is a positive prime number.

5. (a) Define the term *p-group*.

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.

(b) Define the term homomorphism.

Let G be the group of all real 2×2 matrices of the form

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$$

such that $ad - bc \neq 0$, under matrix multiplication. Let \overline{G} be the group of all non-zero real numbers under multiplication. Define a mapping

$$\phi: G \to \overline{G}$$
 by $\phi\left(\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]\right) = ad - bc.$

Prove that ϕ is a homomorphism of G onto \overline{G} .

6. (a) Define the following terms as applied to a group:

- i. permutation;
- ii. cycle of order r.
- (b) Prove that the permutation group on n symbols S_n , is a finite group of order n!. Is S_n abelian for n > 2? Justify your answer.
- (c) Prove that the set of even permutations A_n forms a normal subgroup of S_n . Hence show that $\frac{S_n}{A_n}$ is a cyclic group of order 2.
- (d) Express the permutation σ in S_8 as a product of disjoint cycles, where