SPECIAL DEGREE EXAMINATION IN MATHEMATICS

2004/2005 (March/April, 2007)

MT 402- MEASURE THEORY

Part II

Answer all questions

Time:Three Hours

This paper consists of 6 questions in a total of 3 pages

- 1. (a) Let $A \subseteq \mathbb{R}$, with $m^*(A) < \infty$. Prove that the following four statements are equivalent:
 - i. A is measurable:
 - ii. $\forall \epsilon > 0, \exists$ open $U \supseteq A$ with $m^*(U \setminus A) < \epsilon$;
 - iii. $\exists G \in G_{\delta}$ with $A \subseteq G$ and $m^{\star}(G \setminus A) = 0$;
 - iv. $\forall \epsilon > 0 \; \exists B$, a finite union of open (finite)intervals so that $m^*(A \triangle B) < \epsilon$.
 - (b) Let A be a measurable subset of \mathbb{R} , with m(A) > 0. Prove that $m(A+x) = m(A), \forall x \in \mathbb{R}$;
 - ii. there exists a non-measurable subset P of [0, 1);
 - iii. If $A^* = \{x y : x, y \in A\}$, then A^* contains an interval $[-\alpha, \alpha]$ for some $\alpha > 0$.

2. Prove that

- (a) if $\{A_n\}_{n=1}^{\infty}$ is an increasing infinite sequence of measurable sets in \mathbb{R} , then $m\left(\bigcup_{n=1}^{\infty}A_n\right)=\lim_{n\to\infty}m(A_n);$
- (b) if $\{A_n\}_{n=1}^{\infty}$ is a decreasing infinite sequence of measurable sets in \mathbb{R} such that $m(A_k) < \infty$ for some k, then $m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n)$;
- (c) if the condition $m(A) < \infty$ is dropped part (b) fails to hold;
- (d) Let A be a measurable subset of $\mathbb R$ with $m(A)<\infty$, then the function $x\mapsto m\,(A\cap(-\infty,x])$ is continuous.

- 3. Let (X, \mathcal{B}, μ) be a measure space.
 - (a) What does it to mean to say that a function $f: X \to (-\infty, \infty)$ is \mathcal{B} measurable?
 - (b) Prove that if \mathbb{F} is a countable, non-void set of such functions f and if $g(x) = \sup\{f(x) : f \in \mathbb{F}\}$ for each $x \in X$, then g is \mathcal{B} measurable.
 - (c) Give an example of X, \mathcal{B} , and \mathbb{F} to show that the assertion in part (b) can fail if "countable" is omitted.
 - (d) Let g be an integrable function over a measurable set $A \subseteq \mathbb{R}$. Let $\{f_n\}$ be a sequence of measurable functions such that $|f_n(x)| \leq g(x) \ \forall \ x \in A$ and $\lim_{n \to \infty} f_n(x) = f(x)$ a.e on A. Prove that $\int_A f = \lim_{n \to \infty} \int_A f_n$. Deduce that $\lim_{n \to \infty} \int_A^\infty \frac{n^2 x e^{-n^2 x^2} dx}{1 + x^2} = 0$, if a > 0.

but, the result does not hold if a = 0

- 1. (a) Let (X, Σ, μ) be a measure space, and the completion (X', Σ', μ') of (X, Σ, μ) be defined by $\Sigma' = \{A \cup B | A \in \Sigma, B \subseteq C \text{ for some } C \in \Sigma, \mu(C) = 0\}$ and $\mu'(A') = \mu(A)$ when $A' = A \cup B$. Prove that (X', Σ', μ') is complete measure space.
 - (b) Let (X, \mathcal{B}, μ) be a complete measure space. Let $1 and <math>\mathcal{L}^p(X, \mathcal{B}, \mu)$ comprises all \mathcal{B} measurable functions f on X for which

$$\int_{X} |f|^{p} d\mu < \infty, \text{ and } ||f||_{p} = \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \text{ for } f \in \mathcal{L}^{p}(X, \mathcal{B}, \mu).$$

Prove that

- i. if $f, g \in \mathcal{L}^p(X, \mathcal{B}, \mu)$, then $f + g \in \mathcal{L}^p(X, \mathcal{B}, \mu)$ and $||f + g||_p \le ||f||_p + ||g||_p$;
- ii. $\mathcal{L}^p(X,\mathcal{B},\mu)$ with $||.||_p$ is a complete normed linear space.

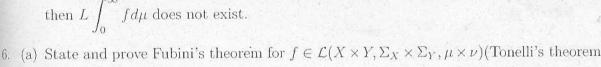
Let (X, \mathcal{B}, μ) be a measure space. Prove that

- (a) of $\{f_n\}_{n=1}^{\infty}$ is an increasing sequence of non-negative measurable functions on X, with $\lim_{n\to\infty} f_n = f$, then $\int_X f d\mu = \lim_{n\to\infty} \int_X f_n d\mu$, but, the result does not hold for decreasing sequences.
- (b) if $\{f_n\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions on X, with $\lim_{n\to\infty} f_n = f$ a. e, then $\int_X f d\mu \leq \lim_{n\to\infty} \inf \int_X f_n d\mu$, however strict inequality may not hold.
- (c) if f, g are two non-negative measurable functions on X, and let a, b be non-negative constants, then af + bg is measurable and $\int_{Y} (af + bg) d\mu = a \int_{X} f d\mu + b \int_{Y} g d\mu$
- (d) if $\{f_n\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions on X, then

$$\int_{X} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_{X} f_n d\mu$$

(e) If

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } 0 < x < \infty, \\ 1, & \text{if } x = 0 \end{cases}$$



- may be assumed)
- (b) Prove that if $f:[0,1]\times[0,1]\to\mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

then the iterated integrals are not equal. Is f integrable?

(c) By considering $\int_0^a \int_0^\infty e^{-xt} \sin x dt dx$ prove that $\lim_{a \to \infty} \int_0^a \frac{\sin x}{x} dx = \frac{\pi}{2}$