EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (2007/2008) FIRST SEMESTER (December/January, 2008) ## MT 304 - GENERAL TOPOLOGY (PROPER & REPEAT) **Answer all Questions** Time: Two hours Q1. (a) Define the following: i. frontier point, ii. exterior point. - (b) Prove that the intersection of two topologies for a set X is again a topology. - (c) Prove that $A \cup A'$ is a closed set, for any set A where A' is the derived set of A. - (d) Let (\mathbb{R}, τ) be a topological space induced by the absolute value metric. Let A = (0, 1]. Find Fr(A), the frontier of the set A. - (e) Let A be a subset of a topological space (X, τ) . Show that: i. $$(\overline{A})^c = (A^c)^o$$; ii. $$\overline{A^c} = (A^o)^c$$. Q2. (a) Define the following terms: - i. subspace of a topological space (X, τ) ; - ii. connected set. - (b) Let (X, τ_1) be a subspace of a topological space (Y, τ_2) and let (Y, τ_2) be subspace of a topological space (Z, τ_3) . Show that (X, τ_1) is a subspace (Z, τ_3) . - (c) Prove that the continuous image of a connected set is connected. - (d) Let (X, τ) be a topological space. Prove that if X is connected, then X can be expressed as the union of two disjoint non empty closed sets. ## Q3. Prove or disprove each of the following statements: - (a) In the usual topology on \mathbb{R} , the subset (0,1) is compact. - (b) (X, τ) is a compact topological space if and only if the collection $\{A_{\alpha} \mid \alpha \in I, A_{\alpha} \text{ are closed sets}\}$ satisfies the finite intersection property, is $\bigcap A_{\alpha} \neq \emptyset$. - (c) In any topological space (X, τ) and $A \subseteq X$ a set G is open in A if and on G is open in X. - (d) If (X, τ) is a topological space, then every finite subset A of X is compact ## Q4. Define the Frechet space and the Hausdorff space. - (a) Prove that every Hausdorff space is Frechet space. Is the converse true? Just your answer. - (b) Prove that a topological space X is a Frechet space if and only if every single subset of X is closed. - (c) If A is a non empty proper compact subset of a Hausdorff space, prove the is closed. - (d) If A and B are two non-empty disjoint proper compact subsets of a Haush space, show that there exists two disjoint open subsets G and H such that $A \subseteq G$ and $B \subseteq H$.