EASTERN UNIVERSITY, SRI LANKA SPECIAL DEGREE EXAMINATION IN MATHEMATICS (2004/2005) MARCH/APRIL, 2007

PART I MT 406 – APPROXIMATION THEORY

Time: 3 Hours

Maximum Marks: 600

Answer ALL Questions

- I. (a) If K is a closed convex subset of Rⁿ, then show that K possesses a unique point of minimum norm.
 - (b) Show, if X is a uniformly convex Banach space and K ⊂ X is a closed convex set, that each f∈ X has a unique best approximation p* from K.
 - (c) Let X be a strictly convex normed space and $M \subset X$ be a finite dimensional subspace. Prove that each $f \in X$ has a unique best approximation from M. [25 + 40 + 35 = 100]
- II. (a) Let $f \in C[a,b]$ and let $g_1, ..., g_n \in C[a,b]$ with $g_1, ..., g_n$ linearly independent. Define $x = (g_1(x), ..., g_n(x)), x \in [a,b]$. Prove that for $P = \sum c_i g_i$ to be a best approximation, that is $c_1, c_2, ..., c_n$ to be such that the residual $r = f \sum_{i=1}^n c_i g_i$ has minimum norm, it is necessary and sufficient that $\underline{0} \in Co\{r(x)\hat{x} : x \in [a,b] \text{ and } |r(x)| = ||r||\}$.
 - (b) Let $\{g_1, g_2, \dots, g_n\}$ form a Chebyshev system on [a,b]. Let $a \le x_0 < x_1 < x_2 < \dots < x_n < b$ and $\lambda_0, \lambda_1, \dots, \lambda_n \ne 0$. Prove that in order that $0 \in Co\{\lambda_0 \hat{x}_0, \lambda_1 \hat{x}_1, \dots, \lambda_n \hat{x}_n\}$, it is necessary and sufficient that $\lambda_j \lambda_{j+1} < 0$, $j = 0, 1, 2, \dots, n-1$. [55 + 45 = 100]
- III. (a) Prove: $\min_{c_1, c_2, \dots, c_{n-1}} \int_0^{\pi} \left| x \sum_{k=1}^{n-1} c_k \sin(kx) \right| dx = \pi^2/(2\pi).$
 - (b) Define the modulus of continuity of $f \in C_{2\pi}$ and, for $f \in C_{2\pi}$, prove that $\mathcal{E}_n[f] \leq (3/2) \omega(f; \frac{\pi}{n+1}), n = 1,2,3,....$
 - (c) Let $f \in C_{2\pi}$ and $0 < \alpha < 1$. Prove that f satisfies the condition that, for some B > 0, $|f(x) f(y)| \le B|x y|^{\alpha}$, for all $x, y \in [0, 2\pi]$ if there exists A > 0 such that $\mathcal{E}_n[f] \le An^{-\alpha}$, $n \ge 1$. [30 + 25 + 45 = 100]
- IV. (a) Let $f \in C[-1,1]$ and let k be a positive integer and let $0 < \alpha < 1$. Assume that, for some A > 0, $\mathcal{E}_n[f] \leq An^{-k-\alpha}$, $n \geq 1$. Show that $f^{(k)}$ exists and is continuous in (-1,1) and, given $0 < \delta < 1$, there exists B > 0 such that $|f^{(k)}(x) f^{(k)}(y)| \leq B|x-y|^{\alpha}$, for all $x,y \in [-1+\delta, 1-\delta]$.
 - (b) Let X be the space of continuous functions f: $[0,1] \to \mathbb{R}$ with inner product $(f,g) = \int_0^1 f(x)g(x)dx. \text{ Let M be a finite dimensional subspace of X with basis}$ $\{x^{\alpha_1}, x^{\alpha_2},, x^{\alpha_n}\}. \ \alpha_1, \alpha_2,, \alpha_n \ge 0, \text{ distinct. Prove that the distance from } x^m \ (m \ge 0)$

- IV. (a) Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a \mathbb{C}^1 mapping where U is a neighborhood of the line segment L with end points a and b. Prove that $|f(b) f(a)|_0 \le |b a|_0 \max_{x \in \mathbb{R}^n} \|f'(x)\|$.
 - (b) Suppose that the mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ is \mathbb{C}^{-1} in a neighborhood W of the point a, with the matrix f'(a) being nonsingular. Prove that f is locally invertible i.e., there exist neighborhoods $U \subset W$ of a and V of b = f(a), and a one-to-one \mathbb{C}^{-1} mapping $g: V \to W$ such that g(f(x)) = x for $x \in U$ and f(g(y)) = y for $y \in V$; and, in particular, prove that the local inverse g is the limit of the sequence $\{g_k\}_0^\infty$ of successive approximations, defined inductively by $g_0(y) = a$, $g_{k+1}(y) = g_k(y) f'(a)^{-1}[f(g_k(y)) y]$ for $y \in V$.
 - (c) Let the C 1 mapping f: $R_{uv}^{2} \rightarrow R_{xy}^{2}$ be defined by the equations $x = u + (v + 2)^{2} + 1$ $y = (u 1)^{2} + v + 1$. Let a = (1,-2). Is f invertible near a? If so, find a local inverse of f. [25 + 35 + 40 = 100]
- V. (a) State the General Implicit Mapping Theorem. Solve $x^2 + \frac{1}{2}y^2 + z^3 - z^2 - \frac{3}{2} = 0$ $x^3 + y^3 - 3y + z + 3 = 0$ for y and z as functions of x in a neighborhood of (-1,1,0).
 - (b) Prove that every admissible function is integrable.
 - (c) Let $f: \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be an integrable function such that, for each $x \in \mathbb{R}^m$, the function $f_x: \mathbb{R}^n \to \mathbb{R}$, defined by $f_x(y) = f(x,y)$, is integrable. Given the contented sets $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$, let $F: \mathbb{R}^m \to \mathbb{R}$ be defined by $F(x) = \int_B f_x = \int_B f(x,y) dy$. Then prove that F is integrable, and $\int_{A \times B} f = \int_A F = \int_A (\int_B f(x,y) dy) dx$.
 - (d) Find the mass of the ellipsoidal ball $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ with the uniform density of unity. [30 + 20 + 30 + 20 = 100]
- VI. (a) If f is a real-valued C^1 function on the open set $U \subset R^n$ and $\gamma:[a,b] \to U$ is a C^1 path, prove that $\int df = f(\gamma(b)) f(\gamma(a)).$
 - (b) If α is a \mathbb{C}^{-1} differential k-form on an open subset of \mathbb{R}^n , prove that $d(d\alpha) = 0$.
 - (c) If $\varphi: \mathbb{R}^m \to \mathbb{R}^n$ is a \mathbb{C}^1 mapping and α is a \mathbb{C}^1 differential k-form, show that $d(\varphi^*\alpha) = \varphi^*(d\alpha)$.
 - (d) Let Q = $[0,1] \times [0,1] \subset \mathbb{R}^2$ and suppose $\varphi \colon Q \to \mathbb{R}^3$ is defined by the equations x = u + v, y = u v, z = uv.

Then compute the surface integral $\int_{\varphi} x dy \wedge dz + y dx \wedge dz = \int_{\varphi} \alpha$ in two different methods you are aware of. $[2\theta + 2\theta + 3\theta + 3\theta = 100]$