EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE 2005/06 (AUG-SEP. 2007)

FIRST SEMESTER

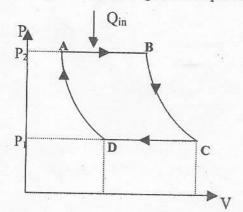
PH 302 - THERMODYNAMICS

Time: 01 hour.

Answer ALL Questions.

1 Distinguish adiabatic and isothermal process. An ideal gas may be defined as one, vequation of state is,

$$PV = nRT$$


and whose internal energy is only a function of temperature. Show that for an ideal gas

- (i) $C_P = C_V + R$, where C_P and C_V are the molar heat capacities at corpressure and constant volume respectively.
- (ii) The quantity PV^{γ} is constant during an adiabatic process (Assume that γ = is constant).
- (iii) The heat absorbed by one mole of gas in an isothermal expression from vol V_1 to volume V_2 is, $RT \ln \left(\frac{V_2}{V_1} \right)$.
- (iv) The work done in adiabatic expansion of the gas from (P_1, V_1) to (P_2, V_2) $\frac{1}{\gamma 1} (P_1 V_1 P_2 V_2)$.
- 2. Define the heat capacity at constant volume and show that,

$$C_{\nu} = \left(\frac{\partial U}{\partial T}\right)_{\nu}$$

The symbols have their usual meanings.

What is heat engine? Obtain a general expression for its efficiency.

Point
$$A \equiv (V_2, P_2)$$

$$Po \operatorname{int} B \equiv (V_3, P_2)$$

$$Po \operatorname{int} C \equiv (V_4, P_1)$$

Point
$$D \equiv (V_1, P_1)$$

The Joule cycle shown above consists of two constant-pressure (isobaric) steps come by two adiabatic. Show that the Thermal efficiency of a reversible engine operating in cycle, with an ideal gas of constant heat capacities as the working medium is,

$$\eta = 1 - r_P \left(\frac{1 - \gamma}{\gamma}\right)$$

where the compression ratio $r_P = \frac{P_2}{P_1}$ and $\gamma = \frac{C_P}{C_V}$.

Where the symbols have their usual meanings.