FASTERN UNIVERSITY, SRI LANKA

versibilized EXAMINATION IN SCIENCE (2005/2006)

SECOND SEMESTER (Dec. '2008/Jan. '2009)

MT 301 - GROUP THEORY Repeat (Special)

Answer all questions

1AN 2000)

Time: Three hours

- 1. (a) Define the following terms
 - i. group;
 - ii. cyclic group;
 - iii. abelian group.

Prove that every subgroup of a cyclic group is cyclic.

Is the converse part true? Justify your answer.

- (b) State and prove Lagrange's theorem.
 - i. In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K = \{e\}$, where e is the identity element of G.
 - ii. Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|} = e$, $\forall x \in G$.
- 2. (a) What is meant by saying that a subgroup of a group is normal?
 - i. Let H and K be two normal subgroups of a group G. Prove that $H \cap K$ is a normal subgroup of G.
 - ii. Prove that every subgroup of an abelian group G is a normal subgroup of G.

- (b) With usual notations prove that
- i. $N(H) \leq G$;
 - ii. $H \leq N(H)$.
 - (c) Let $Z(G) = \{x \in G \mid xg = gx, \forall g \in G\}$. Prove the following

i.
$$Z(G) = \bigcap_{a \in G} C(a)$$
, where $C(a) = \{g \in G : ga = ag\}$

- ii. $Z(G) \triangleleft G$.
- 3. (a) State the first isomorphism theorem.

Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove the following

- i. $K \subseteq H$;
- ii. $H/K \leq G/K$;
- iii. $\frac{H/K}{G/K} \cong G/H$.
- (b) Write down the class equation of a finite group G. Let G be a group of order p^n , where p is a prime number. Prove that, Z(G) = G if n = 2.
- 4. (a) Define commutator subgroup G' of a group G.

Prove that the following

- i. $G' \subseteq G$;
- ii. G/G' is abelian.
- (b) Let $H \subseteq G$, $P = \{K \subseteq G : H \subseteq K\}$ and $Q = \{K' : K' \subseteq G/H\}$. Prove that there exists a one to one correspondence between P and Q.

(a) What is meant by the "internal direct product" as applied to a 5. group.

ls it true that all the groups satisfy the internal direct product property? Justify your answer.

Let H and K be two subgroups of a group G, prove that G is a direct product of H and K if and only if

- i. each $x \in G$ can be uniquely expressed in the form x = hk, where $h \in H, k \in K$.
- ii. hk = kh for any $h \in H, k \in K$.
- (b) Define the term "p-group". Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.
- (a) Define the following terms as applied to a group.
 - i. Permutation;
 - ii. Cycle of order r;
 - iii. Transposition.
 - (b) Prove that the permutation group on n symbols (S_n) is a finite group of order n!.

Is it true that S_n is abelian for n > 2? Justify your answer.

- (c) Prove that every permutation in S_n can be expressed as a product of transpositions.
- (d) Prove that the set of even permutations forms a normal subgroup of S_n .