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1. State and prove Gauss's theorem.

(a) Assuming that the total charge @ of an atomic nucleus is uni-
formly distributed within a sphere of radius ‘a’, show that the

potential at a distance r from the center (r < a) is ;
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(b) A charge q is uniformly distributed on a circle with equations

2%+ 2% = g2, Y = 0. Show that the potential at 5 point P(0, v, 0)
is _______Q_’h_____
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Prove also that the electric field at Pl . ‘ —
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where j is the unite vector along the ¥ axis.



2. Show by using separation of variable or otherwise, that the solution
of the equation V?V = 0, where V is the potential function in two

dimensional rectangular co-ordinates is given by;

V = (A sinh az + A, cosh az) (B sin ay + B; cos ay)

where Ay, Ay, B, By and « are arbitrary constants.
Prove that the potential distribution inside the rectangular region showr

in figure,for the boundary conditions noted is given by;
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3. (a) Define the term “clectric dipole”.
Prove that the electric botential 1V 5t 4 point P a¢ 4 distance ¢
form the dipole of moment P is givep by
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Hence prove that the force oy a dipole in an electric field g is
given by,

E=(R-v)g
(b) Wh

at is dielectric polarization ?

Show, with the usual notation that the potentia] due to

a finite
volume of dielectric ig given by
I rP.ds 1 ~divP
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Interpret, this result,
(a) Define the magnetic flyx density B and show that divl = 0 iy
space, '

By assuming the Ampere’s law iy integral form deduce the equa-
tion curl B — HoJ wherei is the current density.
(b) Define the magnetic fie]d strength H in g magnetizable

media and
show that curll = ;.

If no currents are pregent and the magnetization ig linearly pro-
portional to H, show that there exists

a function @ such that
Vi =,



(c) Prove that the magnetic field at a distance d from an infinitely

-

; iy (1
long straight wire which carries current [ , 1s given by g“ (a)

m
Where 1 is the magnetic permeability of vacuum.



