

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2002/2003

(MARCH/APRIL 2004)

PH 205 RELATIVITY

Time: 01 hour.

Answer ALL Questions

(i) Derive the Lorentz Transformation equations.

1.

- (ii) Write down the Lorentz Inverse Transformation equations.
- (iii) An inertial frame S' moving with velocity $1.8 \times 10^8 ms^{-1}$ with respect to the frame S along the common XX' axis in such a way that the origins of the two frames coincide at t = t' = 0. Two events are recorded the frame S, one occurs at the origin $(x_1 = 0)$ at $t_1 = 0$ and the other occurs on the X- axis at $x_2 = 300m$ and $t_2 = 1 \times 10^{-6}$ sec. Find the time interval between the events as measured in the frame S'.
- derive an expression for the relativistic kinetic energy of a particle.From this deduce the expression for the non-relativistic kinetic energy of the particle.
 - (i) Show the Energy-Momentum equation of the particle is given by

$$E^2 - p^2 c^2 = m_0^2 c^4.$$

The symbols have their usual meanings.

- (ii) A particle of rest mass m_0 moving at a speed of $\frac{4c}{5}$ collides with a similar particle at rest. If the two particles join together after the collision, show that
 - (i) The rest mass of the resulting particle is $\frac{4m_0}{\sqrt{3}}$
 - (ii) The speed of the resulting particle is $\frac{c}{2}$.
 - (iii) The momentum of the resulting particle is $\frac{4}{3}m_0c$.