

EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2002/2003

SECOND SEMESTER

(MARCH/APRIL 2004)

PH 207 ELECTRICITY AND MAGNETISM II

Time: 01 hour.

Answer ALL Questions

You may find the following information useful. permitivity in free space $\varepsilon_0 = 8.85 \times 10^{-12} Fm^{-1}$ mass of the electron $m_e = 9.1 \times 10^{-31} Kg$ charge of the electron $e = 1.6 \times 10^{-19} Coulmb$

vector equation

$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$

The symbols have their usual meanings.

1. Starting with Gauss's Therom in electrostatics show that the Displacement vector D in a dielectric medium may be written as

$$D = \varepsilon_0 E + P$$

A sphere of radius R made of a material of permittivity ε carries a uniform charge distribution Q Coulomb m^{-3} .

- (i) Obtain expressions for Electric field E at a distance r from the center of the sphere when r > R and r < R
- (ii) Hence determine the Displacement vector D and the Polarization vector P at a distance r from the center of the sphere when r > R
- (iii) Show that an electron of mass m and charge e placed inside this sphere will oscillate with period T given by

$$T = 2\pi \sqrt{\frac{3\varepsilon_0 \varepsilon_r m}{Qe}}$$

(iv) Calculate T when $\epsilon_r = 3$ and $Q = 10^{10} Coulomb m^{-3}$.

The symbols have their usual meanings.

- (i) Write down Maxwell's Equations in free space. 2.
 - (ii) Starting from Maxwell's equations obtain the wave equation for
 - (iii) Show that the velocity C of an electromagnetic wave in free space is given by $C^2 \varepsilon_0 \mu_0 = 1$

$$C^2 \varepsilon_0 \mu_0 = 1$$

(iv) A plane electric wave traveling in vacuum is described by

$$E = E_0 e^{i(\omega t - kz)}$$

Using appropriate Maxwells equations find the magnetic field and show that

$$\frac{E_0}{B_0} = \frac{\omega}{k}$$

(v) Hence show that

$$B_0 = \frac{E_0}{\sqrt{\varepsilon_0 \mu_0}}$$

The symbols have their usual meanings.

leterative the Displacement vertice D and the Polar