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A particle of mass m with energy E and angular momentum /, moves in a
plane under the action of central field with potential V' =4»'"> where k is a
constant (k>0).

(a)Show that the angular momentum is a constant.

(b)Show that the motion of the particle is equivalent to that of the motion of

a particle in one dimension in an effective potential given by:
oo P
Vg = =k kr'’?
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(c) Obtain expressions for the energy and angular momentum of the particle
if it moves in a circular orbit of radius a.

(d)If a small displacement is given to the particle radially while the particle
moving in the circular orbit. Show that the particle executes simple
harmonic oscillation about the circular orbit with angular frequency:
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(e) A planet of mass m is orbiting the Sun of mass M in the gravitationg
of gravitational constant G. At perihelion, the magnitude L of a

momentum is mv(l-g)a and at aphelion it is mv'(1+&)a. At peril
2
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the energy E is m; = a((id/f?;) and at aphelion it is ——— — ;%
Where v and v are the velocities of the planet at perihelio
aphelion of the elliptical orbit of the planet respectively. The paran
a and ¢ are the radius of the semi major axis and the eccentricity/|

elliptical orbit of the planet respectively.,

(i) Using conservation of angular momentum deduce

I : I (a)
R m and v’ = m :
(ii) Using conservation of energy, deduce 12 = GMm*a(1-¢&?)
(iif) Using the formula for L?, deduce that £ =— G;im (b
(<)

(d)

Explain what is meant by normal coordinates and normal mode
vibrations of a system.

One end of an inextensible string of length [ is attached to one end: .
uniform rod of length 2/ and mass m and the other end of the stri
attached to a fixed point. The system hangs vertically in the equilibr
position. A small displacement of the rod is made from the equilib (f)
position so that the string remains taught during the displacement. |
configuration of the system may be specified by the angle ¢ and ¢ mad (8)

the string and rod respectively with the downward vertical.



Fixed point

(a)Write down the kinetic and potential energies of the system and show
that the Lagrange's function of the motion is given by:

i :%m[?éz +%m!2¢2 +ml*0pcos(f —¢) +mg(lcosO +1cosg).

(b)Assuming the oscillations are small, deduce the Lagrangian function for
small oscillations about the equilibrium position.

(c) Derive an expression for the Hamiltonian function from the Hamiltonian
function of the system for small oscillations.

" (d)Obtain the Hamilton's equations for the system. Hence deduce the
. equations of motion of the system,

(e)Show that the normal frequencies of vibrations of the system are
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(f) Write down the general solution for the equations of motion.

(g) Find the normal coordinates of the system.
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