EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE (2002/03 & 2002/03 (A))

(Second Semester - February / March 2004)

Number Theory - MT 309

Answer all questions

Time allowed: 2 hours

LIBRA

Q1.

- (a) Define the greatest integer $\lfloor x \rfloor$ of a real number x and show that $0 \le \lfloor 2x \rfloor 2 \lfloor x \rfloor \le 1$. (25 marks)
- (b) If p ($1 \le p \le n$) and n (> 2) are relatively prime then prove that gcd(n-p,n) = 1. (20 marks)
- (c) Prove that the Linear Diaphantine Equation ax + by = c has a solution if and only if $d \mid c$ where $d = \gcd(a,b)$. Further show that if (x_0,y_0) is a solution then the set of all solutions are given by $\left(x_0 + \frac{bt}{d}, y_0 \frac{at}{d}\right), t \in \mathbb{Z}$ [35 marks] (You may assume that if $d = \gcd(a,b)$ then $\gcd\left(\frac{a}{d},\frac{b}{d}\right) = 1$)
- (d) Find the shortest possible distance between two lattice points on the line defined by ax by = c [20 marks]

Q2.
(a) If $a = t_1^{g_1} t_2^{g_2} \dots t_r^{g_r}$ and $b = t_1^{h_1} t_2^{h_2} \dots t_r^{h_r}$ then $gcd(a, b) = t_1^{c_1} t_2^{c_2} \dots t_r^{c_r}$ and $lcm(a, b) = t_1^{d_1} t_2^{d_2} \dots t_r^{d_r}$, where each c_i and d_i are the minimum and maximum of g_i and h_i respectively. Use this result (without proof) to show that

$$lcm(a,b) = \frac{ab}{\gcd(a,b)}$$

(30 marks)

- (b) If p and q are two distinct primes, then show that \sqrt{pq} is irrational. (20 marks)
- (c) Define the Fibonacci sequence f_n (10 marks) and prove that

(i)
$$f_n > \alpha^{n-2}$$
 for $n \ge 2$, where $\alpha = \frac{1 + \sqrt{5}}{2}$, (20 marks)

(ii)
$$f_{n+1}f_{n-1} - f_n^2 = (-1)^n$$
, for $n \ge 1$. (20 marks)

Q3.

(a) Define Euler's ϕ function $\phi(n)$ for any nonnegative integer n and show that $\omega(n) < \phi(n)$, where $\omega(n)$ denotes the number of primes $\leq n$ that does not divide n. (20 marks)

- (b) State Euler's Theorem and use it to prove $n^p \equiv n \pmod{p}$ for any integer n, any prime p. (20 marks)
- (c) If gcd(a,m) = gcd(a-1,m) = 1 then prove that

$$1 + a + a^2 + \dots + a^{\phi(m)-1} \equiv 0 \pmod{m}.$$

(15 marks)

Stl banko

- (d) Show that if gcd(m,n) = 1 then $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$. (20 marks)
- (e) State Willson's Theorem and use it to prove if $p \equiv 1 \pmod{4}$ then

$$\left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv -1(\bmod p)$$

(25 marks)

Q4.

(a) If $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$ then show that $a \equiv b \pmod{m_1 m_2}$, where $\gcd(m_1, m_2) = 1$. (20 marks)

(b) Define a pseudoprime and show that there are infinitely many pseudoprimes to the

base 2.

(You may use the result that if d and n are natural numbers and $d \mid n$ then $(2^d - 1) \mid (2^n - 1)$). (30 marks)

- (c) Define Carmichael numbers and show that 2821 is a Carmichael number (20 marks)
- (d) If a belongs to the exponent h modulo m and if $a^r \equiv 1 \pmod{m}$ then show that $h \mid r$. (15 marks)
- (e) If a belongs to the exponent h modulo m and if gcd(k,h) = d then show that a^k belongs to the exponent $\frac{h}{d}$ modulo m. (15 marks)

(1) $f_{\nu} > a^{-1} \log \nu \ge 2$, where $a = \frac{1 + \sqrt{5}}{2}$, (26 matro.)