I BRAR

EASTERN UNIVERSITY, SRI LANKA ""Versity, 311 Y SPECIAL DEGREE EXAMINATION IN MATHEMATICS 2001/2002 (Jan.'2004)(PART II)

MT 403 - MEASURE THEORY

Answer four questions only
Time: Three hours

- 1. Explain what is meant by a step-function on \mathbb{R} .
 - (a) Let (ϕ_n) be an increasing sequence of step functions on \mathbb{R} such that $(\int \phi_n)$ is convergent. Prove from first principle that (ϕ_n) converges almost everywhere on \mathbb{R} .
 - (b) Show that a subset E of \mathbb{R} is null if, and only if, there is an increasing sequence (ϕ_n) of step functions on \mathbb{R} such that

i.
$$\lim_{n\to\infty}\int \phi_n < \infty$$
 and

ii. for all $x \in \mathbb{E}$, $\phi_n(x) \to \infty$ as $n \to \infty$.

2. (a) Let $f \in L^1(\mathbb{R})$. Prove that there exists a sequence (ϕ_n) of step functions such that $\phi_n(x) \to f(x)$ almost everywhere in \mathbb{R} , and that

$$\int |f - \phi_n| \to 0 \quad \text{as} \quad n \to \infty.$$

(b) Prove that the function $x \to f(x) \cos kx$ belongs to $L^1(\mathbb{R})$ for each $k \in \mathbb{R}$, and that

$$\lim_{k \to \infty} \int_{\mathbb{R}} f(x) \cos kx \ dx = 0.$$

- (c) Given examples of sequences (g_n) and (h_n) in $L^1(\mathbb{R})$ such that
 - i. $g_n \to 0$ almost everywhere but $\int g_n \nrightarrow 0$ and
 - ii. $\int h_n \to 0$ but $h_n \to 0$ almost everywhere.
- (a) Let f be a function which vanishes outside the interval [a, b].
 Prove that if f is bounded and if the points of discontinuity of f form a null set then f ∈ L¹(ℝ).
 - (b) State the Monotone convergence Theorem in $L^1(\mathbb{R})$ and use it to prove

i.
$$\int_{-\infty}^{\infty} e^{-|x|} dx = 2,$$

- ii. If $f \in L^1$ then $\int |f| = 0$ if, and only if, f = 0 almost everywhere, and
- iii. $\lim_{n \to \infty} \int_0^1 \frac{1+x}{1+x^n} \, dx = \frac{3}{2}$.

- 4. State and prove the Dominated convergence theorem in $L^1(\mathbb{R})$.

 (Monotone convergence theorem may be assumed.)
 - (a) Prove that, for $\beta > -1$,

$$\int_0^\infty \frac{e^{-\beta x}}{e^x + e^{-x}} dx = \sum_{r=0}^\infty \frac{(-1)^r}{(2r+1+\beta)}.$$

(b) Let p, q be real numbers such that 0 . Prove that

$$\int_0^1 \frac{x^p - x^q}{x(1 - x)} dx = (q - p) \sum_{n=0}^\infty \frac{1}{(n+p)(n+q)}.$$

5. State Fubini's Theorem for Lebesgue integrable function on \mathbb{R}^2 .

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be measurable and suppose that one of the repeated integrals

$$\int \left[\int |f(x,y)| \ dx \right] \ dy, \quad \int \left[|f(x,y)| \ dy \right] \ dx$$

exists. Prove that $f \in L^1(\mathbb{R}^2)$.

(a) Prove that

$$f(x,y) = (x - \sin x)y^2 e^{-xy} \in L^1((0,\infty) \times (0,\infty))$$

and deduce that

$$\int_0^\infty \frac{x - \sin x}{x^3} \, dx = \frac{\pi}{4}.$$

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad \text{if} \quad (x,y) \neq (0,0)$$
$$= 0 \quad \text{if} \quad (x,y) = (0,0).$$

Does $f \in L^1((0,1) \times (0,1))$? Justify your answer.

- 6. (a) Define the term measurable function.
 - i. Prove that, $f: \mathbb{R} \to \mathbb{R}$ is measurable if, and only if mid(-g, f, g) is integrable whenever g is a non-negative integrable function.
 - ii. Let (f_n) be a sequence of measurable functions on \mathbb{R} . Let $f: \mathbb{R} \to \mathbb{R}$ and $f_n \to f$ almost everywhere. Prove that f is measurable.
 - iii. Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function and let $c \in \mathbb{R}$. Prove that $\{x \in \mathbb{R} \mid f(x) \leq c\}$ is measurable.

 (State without proof, any convergence theorem that you use.)
 - (b) What is meant by "a set $A \subseteq \mathbb{R}$ is null"? Prove that an interval in \mathbb{R} is null if, and only if, it is degenerate.