EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2002/03 & 2002/03(A

FIRST SEMESTER MT 101 - FOUNDATION OF MATHEMATICS Three hours

Answer all questions

01.

(a) Using the laws of algebra of propositions in logic, show that:

$$(i) > (p \lor q) \lor (> p \land q) \equiv (> p);$$

(ii)
$$p \lor (p \land q) \equiv p$$
.

[10 marks each]

(b) Determine the truth value of each of the following statements where $A = \{n : 1 \le n \le 10, n \text{ is a positive integer}\}$. Justify your answers.

(i)
$$(\forall x \in A) (\exists y \in A)(x+y < 14);$$

(ii)
$$(\forall x \in A) (\forall y \in A)(x+y < 14);$$

(iii)
$$(\forall y \in A)(x+y < 14)$$
. [5 marks each]

- (c) Negate each of the following statements:
- (i) If the teacher is absent, then some students do not complete their homework.
- (ii) All the students completed their homework and the teacher is present.
- (iii) Some of the students did not complete their homework or the teacher is absent. [10 marks each]
- (d) Test the validity of the following argument:

If I study, then I will not fail mathematics.

If I do not play basketball, then I will study.

But I failed mathematics.

Therefore I must have played basketball. [35 marks]

02.

Define the following:

- The difference, $A \setminus B$, of two sets A and B.
- Symmetric difference, $A \triangle B$, of two sets A and B.
- Power set, P(A), of a set A. [5 marks each]

Prove the following:

(i)
$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$
;

$$(ii) A\Delta B = (A \cup B) \setminus (A \cap B);$$

(iii) $(A\Delta B) \cap (A \cap B) = \phi$;

(iv) If $A\Delta B = A\Delta C$ then B = C;

$$(v) P(A) \cap P(B) = P(A \cap B)$$
. [15 marks each]

Construct suitable examples to show that $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$ and

 $P(A) \cup P(B) \neq P(A \cup B)$. [10 marks]

03.

Define the following:

- An equivalence relation on a set,
- An equivalence class of an element in a set. [5 marks each]
- (a) Suppose Ω is a collection of relations R on a set A and let T be the intersection of the relations R, that is $T = \bigcap \{R : R \in \Omega\}$. Prove that
- (i) if every R is symmetric, then T is symmetric.
- [15 marks each] (ii) if every R is transitive, then T is transitive.
- (b) A relation R on a set of rational numbers, Q, is defined by xRy if and only if $x^2y - xy^2 = x^2 - y^2$. Show that R is an equivalence relation on Q. [25 marks]
- (c) Let $A = \{1, 2, 3, ..., 14, 15\}$. Let \approx be the equivalence relation on $A \times B$ defined by $(a,b) \approx (c,d)$ if and only if ad = bc. Find the equivalence class of (3,2).
- (d) If a relation R on a set A is reflexive then show that $R \cap R^{-1}$ is not empty. [10 marks]

04.

Define the terms injective, surjective, and bijective as applied to a mapping. [15 marks] (a) Let $f: S \to T$ be a mapping. Prove that

- (i) f is injective if and only if $f(A) \cap f(S \setminus A) = \phi$, $\forall A \subseteq S$; [15 marks]
- (ii) if f is injective then $f(A \cap B) = f(A) \cap f(B)$, $\forall A, B \subseteq S$. [10 marks]
- (b) Let $f: A \to B$ and $g: B \to C$ be two mappings. Prove the following:
 - (i) If $g \circ f$ is one-to-one, then f is one-to-one;
 - (ii) If $g \circ f$ is onto, then g is onto. [15 marks each]
- (c) Prove that the mapping $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \left\{ \begin{array}{ll} x^4 & \text{if } x \ge 0, \\ x(2-x) & \text{if } x \le 0, \end{array} \right\}$$

[20 marks] is bijective and hence find its inverse

(d) Suppose $f: A \to B$ is a constant function. When will f be: (i) one-to-one, (ii) onto? [10 marks]

Define the following:

- A partial order on a set.
- Supremum of a set.
- Infinimum of a set. [5 marks each]

When does a partially ordered set become a totally ordered set? [5 marks]

- (a) Consider the relation R on the set of integers Z, which is defined in such a way that aRb if and only if $b = a^r$ for some positive integer r. Show that R is a partial order on Z. [30 marks]
- (b) Show that if R defines a partial order on a set A then R^{-1} also defines a partial order on A.
- (c) If A and B are two totally ordered sets then prove that $A \times B$ is also a totally ordered set. [10 marks]
- (d) Let $A = \{2, 3, 4, 6, 8, 16, 32, 64\}$ and a relation R on A be defined by $xRy \Leftrightarrow x$ divides y. Find the supremum and infinimum (if exists) for a subset $B = \{2, 4, 8\}$ of A. [20 marks]

Q6. Define the following:

- Greatest common divisor, gcd, of two integers a and b,
- The greatest integer of a real number x,
- The least common multiple, lcm, of two integers a and b. [5 marks each]
- (a) If a, b, and c are integers and c/ab then prove that c/b, where a and c are relatively primes. Hence show that if a and b are integers, p/ab, and p/a then p/b, where p is a prime. [20 marks]
- (You may use the result that if $d = \gcd(a, b)$ then there exist integers x and y such that ax + by = d)
- (b) If p and q are primes and p/q then prove that p=q. Hence, or otherwise, show that if $p/(q_1q_2\cdots q_r)$, where p and the q_i 's are primes, then p is equal to one of the q_i 's. [20 marks]
- (c) Explain whether it is possible to have 100 coins made up of c cents, d dimes, and q quarters, be worth exactly \$5. (Here 1 dime = 10 cents, 1 quarter = 25 cents) [15 marks]
- (d) State the result involving gcd and lcm of two integers and use it to find the lcm of 2m + 1 and 2m 1, where $m \in \mathbb{Z}$. [20 marks]
- (e) What values of x will satisfy the linear congruence $2x \equiv 1 \pmod{7}$? [10 marks]