EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MALITERY
SECOND EXAMINATION IN SCIENCE 2002/2003

FIRST SEMESTER

REPEAT

MT 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time: Three hours

1. (a) Explain what is meant by

i a vector space,

ii. a subspace of a vector space.

[20 marks]

- (b) Let V be a vector space over a field F and W be a non-empty subset of V. Prove that W is a subspace of V if and only if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in \mathbb{F}$. 35 marks
- (c) Let $M_{m \times n}$ be the set of all real $m \times n$ matrices. For any two matrices $A = [\alpha_{ij}]_{m \times n}$ and $B = [\beta_{ij}]_{m \times n}$ in $M_{m \times n}$, and for any $\lambda \in \mathbb{R}$ define an addition \oplus and scalar multiplication \odot as follows:

$$[\alpha_{ij}]_{m \times n} \oplus [\beta_{ij}]_{m \times n} = [\alpha_{ij} + \beta_{ij}]_{m \times n},$$

 $\lambda \odot [\alpha_{ij}]_{m \times n} = [\lambda \alpha_{ij}]_{m \times n}.$

Prove that $(M_{m\times n}, \oplus, \odot)$ is a vector space over the field \mathbb{R} . 45 marks

- 2. (a) Define the following:
 - (i) a linearly independent set of vectors,
 - (ii) a basis for a vector space,
 - (iii) dimension of a vector space.

[15 marks]

- (b) Let V be an n-dimensional vector space. Prove the following:
 - (i) A linearly independent set of vectors of V with n elements is a basis for V;
 - (ii) Any linearly independent set of vectors of V may be extended to a basis for V.

[50 marks]

- i. Let V be a vector space over the field R. Suppose that (x, y, z) is linearly independent sequence of vectors in V. Let u = x y,
 v = y z, w = z + αx, where α is a scalar. Prove that the sequence (u, v, w) is linearly dependent if and only if α = -1.
 - ii. In a vector space the sequence of vectors (x_1, x_2, \dots, x_n) is given to be linearly independent and $y = \sum_{i=1}^{n} \alpha_i x_i$ where $\alpha_1, \alpha_2, \dots, \alpha_n$ are scalars with $\alpha_1 \neq 0$. Prove that the sequence $(y, x_2, x_3, \dots, x_n)$ is also linearly independent.

[20 marks]

- (d) Extend the subset $\{(1, -2, 5, -3), (0, 7, -9, 2)\}$ to a basis for \mathbb{R}^4 . [15 marks]
- (a) State and prove the dimension theorem for two subspaces of a finite dimensional vector space.
 [30 marks]
 - (b) Let $\{u_1, u_2, ..., u_n\}$ be a basis of a finite n-dimensional vector space V.

 $V = \langle \{u_1, u_2, \cdots, u_s\} \rangle \oplus \langle \{u_{s+1}, u_{s+2}, \cdots, u_n\} \rangle.$

i. Prove that for each s in the range 1 to
$$n-1$$
, inclusive,

ii. Show that if S_1 and S_2 are two direct complements of S in V, then

$$\dim V - 2\dim S \le \dim(S_1 \cap S_2) \le \dim V - \dim S.$$

[45 marks]

- (c) Let V be a finite dimensional vector space and W be a subspace of V.

 Prove that the quotient space V/W is also finite dimensional and $\dim(V/W) = \dim V \dim W$.

 [25 marks]
- 4. (a) Define

by

- (i) Range space R(T),
- (ii) Null space N(T) of a linear transformation T from a vector space V into another vector space W. [20 marks] Find R(T), N(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined

$$T(x, y, z) = (x + 2y + 3z, x - y + z, x + 5y + 5z), \ \forall \ (x, y, z) \in \mathbb{R}^3.$$

Verify the equation $\dim V = \dim(R(T)) + \dim(N(T))$ for this linear transformation.

[30 marks]

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x,y,z) = (2x+y+3z, \, 3x-y+z, \, -4x+3y+z), \, \, \forall \, (x,y,z) \in \mathbb{R}^3.$ Let $B_1 = \{(1,1,0), \, (0,1,1), \, (1,0,1)\}$ and $B_2 = \{(1,1,1), \, (1,2,3), \, (2,-1,1)\}$ be bases for \mathbb{R}^3 . Find
 - (i) the matrix representation of T with respect to the basis B_1 ;
 - (ii) the matrix representation of T with respect to the basis B_2 by using the transition matrix.

[50 marks]

- 5. (a) Define the following terms as applied to a matrix:
 - i. Rank.
 - ii. Echelon form,
 - iii. Row reduced echelon form.

[15 marks]

- (b) Let A be an $n \times n$ matrix. Prove that
 - i. row rank of A is equal to column rank of A;
 - ii if B is an $n \times n$ matrix, obtained by performing an elementary row operation on A, then r(A) = r(B).

[45 marks]

(c) Find the rank of the matrix

$$\begin{bmatrix} 1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13 \end{bmatrix}$$

[20 marks]

(d) Find the row reduced echelon form of the matrix

$$\begin{bmatrix} -1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$$

[20 marks]

5. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.

[10 marks ri Lanka

Reduce the augmented matrix of the following system of linear equations

$$ax + by = e$$

$$cx + dy = f$$

to its row reduced echelon form and hence determine the conditions on a, b, c, d, e and f such that the system has

- (i) a unique solution;
- (ii) no solution;
- (iii) more than one solution.

[30 marks]

(b) The system of equations

$$2x + 3y + z = 5$$
$$3x + 2y - 4z + 7t = k + 4$$
$$x + y - z + 2t = k - 1$$

is known to be consistent. Find the value of k and general solution of the system.

[30 marks]

(c) State Crammer's rule for 3 × 3 matrix and use it to solve the following system of equations

$$2x_1 = 5x_2 + 2x_3 = 7$$

$$x_1 + 2x_2 - 4x_3 = 3$$

$$3x_1 - 4x_2 - 6x_3 = 5.$$

[30 marks]