### EASTERN UNIVERSITY, SRI LANKA

# SECOND EXAMINATION IN SCIENCE - (2002/2003)

(JUNE/JULY, 2003)

#### FIRST SEMESTER

#### REPEAT

## MT 203 - EIGENSPACE AND QUADRATIC FORMS

Answer all questions

Time:Two hours

- 1. Define the term "eigenvalue" of a linear transformation. [10 marks]
  - (a) Prove that an  $n \times n$  square matrix A is similar to a diagonal matrix D whose diagonal elements are the eigenvalues of A if and only if A has n linearly independent eigenvectors. [25 marks]
  - (b) Let A be a matrix of order n such that  $A^2 = I$ . Show that every eigenvalues of A is either 1 or -1. [25 marks]

$$A = \begin{pmatrix} 4 & 4 & 4 \\ 6 & 6 & 5 \\ -6 & -6 & -5 \end{pmatrix}.$$

Find a non-singular matrix P such that  $P^{-1}AP$  is diagonal. Hence find a matrix B such that  $B^2 = A$ . [40 marks]

- 2. (a) Define the terms "minimum polynomial" and "irreducible polynomial" of a square matrix. [20 marks]
  - (b) State the Cayley-Hamilton theorem.

    By evaluating the characteristic polynomial of the matrix

$$A = \left( egin{array}{ccc} 2 & 0 & 0 \ 1 \cdot 1 & 1 \ 1 & 5 & -1 \end{array} 
ight),$$

show that  $A^{-1} = -\frac{1}{12}(A^2 - 2A - 6I)$ , where I is the identity matrix of order 3. [20 marks]

- (c) Prove the following:
  - i. The characteristic polynomial of an  $n \times n$  matrix A always divides the  $n^{\text{th}}$  power of its minimum polynomial.
  - ii. The characteristic polynomial and the minimum polynomial of an  $n \times n$  matrix A have the same irreducible factors.

[40 marks]

(d) Let A and B be two arbitrary matrices in  $F_{n\times n}$ . Let M be the  $(2n)\times(2n)$  matrix of the form  $\begin{bmatrix} tI & A \\ B & I \end{bmatrix}$ . By premultiplying M by a

matrix  $\begin{bmatrix} I & -A \\ O & I \end{bmatrix}$ , prove that det  $M = \chi_{AB}(t)$ , where

 $\chi_{AB}(t)$  is the characteristic polynomial of AB.

By postmultiplying M by a suitable matrix of the form  $\begin{bmatrix} I & X \\ O & Y \end{bmatrix}$ , deduce that AB and BA have the same eigenvalues, where I and O denote the identity matrix and zero matrix of order n respectively.

[20 marks]

0 1 JAN 2004 3. Let  $\lambda_1$  and  $\lambda_2$  be two distinct roots of the equation Awhere A and B are real symmetric matrices and let  $u_1$  and  $u_2$  be two vectors satisfying  $(A - \lambda_i B)u_i = 0$  for i = 1, 2.

Prove that  $u_1^T B u_2 = 0$ .

30 marks

Simultaneously reduce the following pair of quadratic forms.

$$\phi_1 = 9x_1^2 + 6x_2^2 + 8x_3^2 + 4x_2x_3 + 4x_3x_1 - 4x_1x_2;$$
  
$$\phi_2 = 5x_1^2 + 5x_2^2 + 12x_2x_3 - 12x_3x_1 + 8x_1x_2.$$

[70 marks]

4 What is meant by an "inner product" on a vector space? Verify that the function  $\langle .,. \rangle$ , defined by

$$\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

is an inner product on  $\mathbb{R}^2$ , where  $u=(x_1,x_2),v=(y_1,y_2)$ .

[25 marks]

- (a) If X is a finite dimensional inner product space and f is a linear functional on X, prove that there exists a unique vector  $y \in X$ such that  $f(x) = \langle x, y \rangle$ ,  $\forall x \in X$ . 25 marks
- (b) Let X be an inner product space and M be a finite dimensional subspace of X. Prove that  $X = M \oplus M^{\perp}$ , where  $M^{\perp}$  is orthogonal complement of M and  $\oplus$  denotes the direct sum.
- (c) State Gram-Schmidt process and use it to find the orthonormal set for span of S in  $\mathbb{R}^4$ ,

where  $S = \{(1, 0, -1, 0)^T, (0, 1, 2, 1)^T, (2, 1, 1, 0)^T\}.$ 

[25 marks]