EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE 2002/2003

(June./July.'2003)

FIRST SEIMESTER

MT 207 - NUMERICAL ANALYSIS

Answer all questions

Time: Two hours

- 1. Define absolute error and relative error of a numerical value.
 - (a) Suppose x_1 and x_2 are approximations to the true values α and β respectively and e_1 is the error due to round-off α to k_1 decimal places and e_2 is the error due to round-off β to k_2 decimal places. Find a bound on the absolute error in $x_1 + x_2$ and $x_1 x_2$.
 - i. The numbers a and b when rounded to 3 decimal places are 3.724 and 2.251 respectively. Find b-a to two decimal places and show that the third decimal figure is 2, 3 or 4.
 - ii. The numbers c and d when rounding to 4 significant digits are 23.86 and 0.01762 respectively. Show that the true value of c-d to 4 significant figures will be either 23.85 or 23.84.
 - (b) Evaluate the roots of the quadratic equation

$$x^2 - 60x + 1 = 0$$

using 4 significant digits throughout the calculation. Obtain the relative error in the roots and discuss.

2. Define the order of convergence of an iterative method to compute the roots of a nonlinear equation

$$f(x) = 0 - - - - - - - - (1)$$

- (a) Obtain Newton-Raphson algorithm to compute the roots of the equation
 (1) in an interval [a, b].
 Show that the order of convergence of Newton-Raphson algorithm is at least 2.
- (b) Obtain Secant method to compute the root of the equation (1) in an interval [a, b].
 Show that the order of convergence of Secant method is approximately

1.62.

Compute the root of the equation

$$f(x) = 3x + \sin x - e^x$$

near x = 0 using the methods (a) and (b) to 3 decimal places accuracy and discuss the efficiency of (a) and (b).

3. Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$.

Obtain a unique polynomial $p_n(x)$ of degree at most n with the property

$$f(x_k) = p_n(x_k)$$
 for each $k = 0, 1, ..., n$

and show that

$$f(x) - p_n(x) = \frac{f^{(n+1)(\xi)}}{(n+1)!}(x - x_0)(x - x_1)...(x - x_n)$$

for each x im [a, b], where $\xi(x) \in (a, b)$.

Suppose a table is to be prepared for the function $f(x) = e^x$, $0 \le x \le 1$. Assume the number of places to be given per entry is $d \ge 6$ and that the difference between adjacent x-values, the step size is h.

Show that

$$\mid f(x) - p_1(x) \mid \leq \frac{eh^2}{8}$$

where $p_1(x)$ is a linear interpolation polynomial, and estimate h to give an absolute error of at most 10^{-6} .

4. (a) Obtain Composite Simpson's rule to estimate $\int_a^b f(x)dx$ and show that the truncation error is less than or equal to $\frac{1}{180}h^4(b-a) \mid f^{(iv)}(\xi) \mid$, where $\mid f^{(iv)}(\xi) \mid = \max_{a \le a \le b} \mid f^{(iv)}(x) \mid$.

Estimate the truncation error in the value of $\int_2^4 (1+x)^{\frac{1}{2}} dx$ with h=0.5.

(b) Describe the Gaussian Elimination with scaled partial pivoting for the solution of the equation

$$A\underline{x} = \underline{b}$$

with the usual notation.