

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2000/2001) (MAY' 2001)

FIRST SEMESTER

MT 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time: Three hours

- 1. (a) Define what is meant by:
 - i. a vector space;
 - ii. a subspace of a vector space.

Let V be a vector space over the field F and W be a non-empty subset of V. Prove that W is a subspace of V if and only if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in F$.

(b) Let $V = \{f \mid f : \Re \to \Re, \quad f(x) > 0 \text{ for all } x \in \Re\}$. For any $f, g \in V$ and for any $r \in \Re$, define an addition \oplus and a scalar multiplication \odot as follows:

$$(f \oplus g)(x) = f(x).g(x)$$
 for every $x \in \Re$; $(r \odot f)(x) = [f(x)]^r$ for every $x \in \Re$.

Show that (V, \oplus, \odot) forms a vector space over \Re .

- (c) Let $V = \Re^3$ be a vector space over the field \Re , which of the following are subspace of V;
 - i. $W_1 = \{(a, b, 0); a, b \in \Re\},\$
 - ii. $W_2 = \{(a, b, c); a, b, c \in Q\},\$
 - iii. $W_3 = \{(a, b, c); a+b+c=0\}.$
- (a) Define the following:
 - a linearly independent set of vectors;
 - ii. a basis for a vector space;
 - iii. dimension of a vector space.
 - (b) Let V be an n- dimensional vector space. Prove the following:
 - i. A linearly independent set of vectors of V with n elements is a basis for V.

CONTROL TO CARE

- ii. Any linearly independent set of vectors of V may be extended as a basis for V.
- iii. If L is a subspace of V, then there exists a subspace M of Vsuch that $V = L \oplus M$.
- (c) Extend the subset $\{(1,2,1),(3,-4,7)\}$ to a basis for \Re^3 .

- (a) State the Dimension theorem for two subspaces of a finite dimensional vector space.
 - (b) Let W_1 , W_2 and W_3 be subspaces of a finite dimensional vector space V.

Show that,

$$\dim(W_1 + W_2 + W_3) \le \dim W_1 + \dim W_2 + \dim W_3 - \dim(W_1 \cap W_2) - \dim(W_2 \cap W_3) - \dim(W_1 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3).$$

- (c) If $W_1 = \langle \{(1,1,0,-1), (1,2,3,0), (2,3,3,-1)\} \rangle$ and $W_2 = \langle \{(1,2,2,-2), (2,3,2,-3), (1,3,4,-3)\} \rangle$ are subspaces of \Re^4 . Find
 - i. $\dim W_1$;
 - ii. $\dim W_2$;
 - iii. $\dim(W_1 \cap W_2)$;
 - iv. $\dim(W_1 + W_2)$.

Verify the dimension theorem.

4. (a) Define

- i. Range space R(T),
- ii. Null space N(T),
 of a linear transformation T from a vector space V in to
 another vector space W.

Find R(T) and N(T) of the linear transformation of \Re^3 , defined by $T(x,y,z)=(x+2y+3z,\ x-y+z,\ x+5y+5z)$.

Verify the equation $\dim V = \dim (R(T)) + \dim (N(T))$ for this linear transformation.

- (b) Let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by, $\phi(x, y, z) = (x, x + y, y z)$ and let $B_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $B_2 = \{(1, 1, 0), (-1, 1, 0), (0, 0, 1)\}$ be bases for \mathbb{R}^3 . Find
 - i. the matrix representation of ϕ with respect to the basis B_1 ;
 - ii. the matrix representation of ϕ with respect to the basis B_2 by using the transition matrix;
 - iii. the matrix representation of ϕ with respect to the basis B_2 directly.
- 5. (a) Define the following terms as applied to a square matrix:
 - i. Minor,
 - ii. Co-factor,
 - iii. Adjoint.
 - (b) Let A be any $n \times n$ matrix. If E is an $n \times n$ elementary matrix, show that $\det(EA) = \det E \det A$. Hence or otherwise prove that if A and B are two $n \times n$ square matrices, then $\det(AB) = \det A \det B$.

(c) Let A and B be two $n \times n$ non - singular matrices.

Prove the following:

i.
$$\operatorname{adj}(\lambda A) = \lambda^{n-1}\operatorname{adj} A$$
 for all real number λ ;

Universit

ii.
$$adj(A^{-1}) = (adjA)^{-1}$$
;

iii.
$$\det(\operatorname{adj} A) = (\det A)^{n-1};$$

iv.
$$adj(adjA) = (det A)^{n-2}A;$$

v. adj
$$(adj(adjA)) = (det A)^{n^2 - 3n + 3} A^{-1}$$
.

State any results (theorem) that you use to prove the above results.

(d) Find the adjoint of the following matrix A and hence find it's inverse,

$$A = \left(\begin{array}{ccc} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{array}\right).$$

6. (a) State the necessary and sufficient condition for a system of linear equations to be consistant.

Reduce the augmented matrix of the following system of linear equations to it's row reduced echelon form and hence determine the values of k such that the system has;

- i. a unique solution
- ii. no solution
- iii. more than one solution

$$kx + y + z = 1$$

$$x + ky + z = 1$$

$$x + y + kz = 1$$

(b) State and prove Crammer's rule for 3×3 matrix and use it to solve:

$$x_1 + 2x_2 - cx_3 = -4$$
$$3x_1 + 5x_2 - cx_3 = -5$$
$$-2x_1 - x_2 - cx_3 = -5.$$

(c) Prove that the system,

$$2x + 3y - 2z = 5$$
$$x - 2y + 3z = 2$$
$$4x - y + 4z = 1$$

is inconsistant.