EASTERN UNIVERSITY, SRI LANKA

FOURTH YEAR SECOND SEMESTER EXAMINATION IN AGRICULTURE - 2008/2009

AEC 4105 - BASIC ECONOMETRICS

Answer ALL questions

Time: Two hour (02)

01)

- a) Define the following variables:
 - i) Dependent variable
 - ii) Independent variable

- i) Heteroscedasticity
- ii) Autocorrelation
- iii) Normality

02)

- a) list three different applicable examples where quantitative methods are applied in economics.
- b) A researcher has 100 observations of Y, X_1 , X_2 and X_3 . She uses MLR (Multiple Linear Regressions) to create a dependent factor of Y using X_1 , X_2 and X_3 as predictors. The regression equation is Y = 22.0 -2.04 $X_1 + 0.3$ $X_2 + 0.78$ X_3 . The researcher now notices that the first number in X_3 should have been 16 instead of 6, so he changes only that number and re-fits the model. Now the regression equation is Y = 22 2.04 $X_1 + 3.09$ $X_2 0.008$ X_3 . The researcher assumed MLR assumption violation behind this data set by looking at the two results.

Answer the following:

- i) What may be the cause/violation of this data set?
- ii) Comment on the properties of the estimators of the above models?
- iii) Give one reason for the above violation in regression models?
- iv) How this researcher will handle/overcome the above situation?

- 03) Using the SPSS output tables for a defined analysis given below, answer the following: Name the analysis done to generate this output,

 - Interpret the results obtained. b)

ANOVA (b)

Model	1 311	Sum of Squares	df	Mos. G		
1	Regression	191747559		Mean Square	F	Sig.
100	Residual	599.768	1	19174755959	48.302	
		623253814		9.768	40.302	0.000(a
	Total	359.232	157	3969769518.2	Colored Starting	
		815001373		12		
D 11	s: (Constant), A	050 000	158		nev Malle	

b Dependent Variable: farm income

Coefficients (a)

Model		Unstandardized Coefficients		Standardized Coefficients	Auditaria i	e:
AG	(Constant)	1831.919		Beta		Sig.
	AGLAND ent Variable: far			.485	0.388 6.950	0.699

04)

a) The output table for a multiple regression analysis is given below. Answer the following questions based on the results.

variables	Coefficients	Standard		1
Education of household head	1	error	t-value	Sig.
Age of household head	0.022*	0.011	1.992	0.049
Young is to adult ratio	-0.003	0.004	-0.638	
Diversity index	-0.063	0.047	-1.337	0.525
Sex of household	0.013	0.022		0.184
Constant	0.241*	0.079	0.608	0.545
	3.515*		3.069	0.003
umber of observations: 97, R	-Squara 244 (D	0.262	13.42	0.000

Number of observations: 97, R-Square: .344 (Prob>F), Adjusted R-Square: .300

Regression mean square > residual mean square (.838 > .107)

Dependent variable: Household income

*Significant at 5% level (P< 0.05)

(Note: Coding given for sex of household head during data entry female: 0, male: 1) I. Interpret the R² value of this output.

- II. Write down the estimated equation for the above output.
- III. Interpret the relationship between the dependent and predictors of this output.