EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009

FIRST YEAR, FIRST SEMESTER (July/August, 2010)

EXTMT 101 - FOUNDATION OF MATHEMATICS

Answer all questions

Time: Three hours

- 1. (a) Prove the following equivalences using the laws of algebra of propositions:
 - i. $(p \wedge q) \vee \neg p \equiv \neg p \vee q;$
 - ii. $[p \land (q \lor r)] \land \neg [(\neg q \lor \neg r) \land r] \equiv p \land q.$
 - (b) Test the validity of the argument "If you are a mathematician then you are clever. You are clever and rich. Therefore if you are rich then you are a mathematician".
 - (c) In a group of students in a school at least 70% study Applied Mathematics, at least 75% study Pure Mathematics, at least 80% study Chemistry and at least 85% study Physics. Find at least what percentage of students study all four subjects.
- 2. (a) For any sets A, B and C, prove that:
 - i. $A \times (B \cap C) = (A \times B) \cap (A \times C);$
 - ii. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
 - (b) If $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then show that B = C. Hence prove that

$$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$$
 if and only if $A \triangle (B \cup C) = (A \triangle B) \cup (A \triangle C)$.

- 3. (a) Let $S = \{(\vec{x}, y) \in \mathbb{R} \times \mathbb{R} \mid x \neq 0, y \neq 0\}$ and define a relation R on S by $(x_1, y_1)R(x_2, y_2) \Leftrightarrow x_1y_1(x_2^2 y_2^2) = x_2y_2(x_1^2 y_1^2)$
 - i. Show that R is an equivalence relation.
 - ii. If (a, b) is a fixed element of S, show that $(x, y)R(a, b) \Leftrightarrow \frac{y}{x} = \frac{b}{a}$ or $\frac{y}{x} = \frac{-a}{b}$
 - (b) If R_1 and R_2 are equivalence relations on a set X, prove the following:
 - i. $R_1 \cap R_2$ is an equivalence relation;
 - ii. $R_1 \cup R_2$ need not be an equivalence relation.

- 4. (a) Define each of the following terms:
 - i. injective mapping;
 - ii. surjective mapping;
 - iii. inverse mapping.
 - (b) The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are defined by

$$f(x) = \begin{cases} 4x + 1, & \text{if } x \ge 0; \\ x, & \text{if } x < 0. \end{cases} \text{ and } g(x) = \begin{cases} 3x, & \text{if } x \ge 0; \\ x + 3, & \text{if } x < 0. \end{cases}$$

Find the formula for $g \circ f$.

Show that $g \circ f$ is a bijection and give a formula for $(g \circ f)^{-1}$

- 5. (a) Define the following terms:
 - i. partially ordered set;
 - ii. totally ordered set;
 - iii. first element;
 - iv. minimal element.
 - (b) Show that every partially ordered set has at most one first element.
 - (c) Show that first element of every partial ordered set is a minimal element.

 Is the converse true? Justify your answer.
 - (d) Prove that in a totally ordered set every minimal element is a first element.
- 6. (a) Show that the square of any integer is of the form 3k or 3k+1, where k is an integer
 - (b) Using the Euclidean algorithm find the gcd(1819,3587) and hence express the gcd(1819,3587) as a linear combination of 1819 and 3587.
 - (c) A customer bought 12 pieces of fruit, apples and oranges, for Rs. 132. If an approximate costs Rs. 3 more than an orange and more apples than oranges were purchased, he many pieces of each kind were bought.