

EASTERN UNIVERSITY, SRI LA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2005/2006

SECOND YEAR, FIRST SEMESTER (Mar./May, 2010)

EXTMT 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time: Three hours

- 1. Define the term vector space.
 - (a) Let V be a vector space over a field \mathbb{F} . Prove that a non-empty subset W of V is a subspace of V if and only if $\alpha x + \beta y \in W$, for any $x, y \in W$ and $\alpha, \beta \in \mathbb{F}$.
 - (b) Let $\mathbb{Q}(\sqrt{2}) = \{x + \sqrt{2}y : x, y \in \mathbb{Q}\}$, where \mathbb{Q} denotes the set of all rational numbers. For any $X,Y\in\mathbb{Q}(\sqrt{2})$ the operations of addition \oplus and a scalar multiplication ⊙ are defined as follows:

$$X \oplus Y = (x_1 + y_1) + \sqrt{2}(x_2 + y_2)$$

and

$$\alpha \odot X = \alpha x_1 + \sqrt{2}\alpha x_2$$

where $X = x_1 + \sqrt[3]{2}x_2$, $Y = y_1 + \sqrt{2}y_2$ and $\alpha \in \mathbb{Q}$.

Prove that $(\mathbb{Q}(\sqrt{2}), \oplus, \odot)$ is a vector space over \mathbb{Q} .

- (a) Define the following:
 - a linearly independent set of vectors;
 - a basis for a vector space;
 - iii. dimension of a vector space.

- (b) Let V be an n-dimensional vector space. Show that
 - i. a linearly independent set of n vectors of V is a basis for V;
 - ii. any linearly independent set of vectors of V may be extended to a basis V;
 - iii. if L is a subspace of V, then there exists a subspace M of V such that $V = L \oplus M$, where \oplus denote the direct sum.
 - (c) Let $\mathbb{P}_n = \left\{ \sum_{i=0}^n a_i x^i : a_i \in \mathbb{R}, n \in \mathbb{N} \right\}$ be the set of all polynomials of degree $\leq n$ with real coefficients.
 - i. If $S = \{2, x, x x^2, x + x^2\}$ is a subset of \mathbb{P}_2 , then find the dimension of \langle

5.

- ii. Show that $B = \{1, (x-1), (x-1)^2, (x-1)^3\}$ is a basis of \mathbb{P}_3 .
- 3. (a) Define the range space R(T) and the null space N(T) of a linear transformat T from a vector space V into another vector space W.

Find R(T) and N(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, x_2 + x_3, x_1 + x_2 - 2x_3).$$

Verify the equation $\dim V = \dim(R(T)) + \dim(N(T))$ for the above linear traformation T.

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by T(x, y, z) = (x + 2y, x + y + z, z) be a lin transformation and let $B_1 = \{(1, 1, 1), (1, 2, 3), (2, -1, 1)\}$ and $B_2 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ be bases of \mathbb{R}^3 .
 - i. Find the matrix representation of T with respect to the basis B_1 ;
 - ii. Using the transition matrix, find the matrix representation of T with resp to the basis B_2 .
- 4. (a) Define the following terms:

ģ

- (i) rank of a matrix;
- (ii) row reduced echelon form of a matrix.
- (b) Let A be an $m \times n$ matrix. Prove the following:
 - (i) row rank of A is equal to column rank of A;
 - (ii) if B is a matrix obtained by performing an elementary row operation on then A and B have the same rank.

(c) Find the rank of the matrix

$$\begin{pmatrix}
1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 3 & 3 & 0 & 2 \\
2 & 1 & 3 & 3 & -1 & 3 \\
2 & 1 & 1 & 1 & -2 & 4
\end{pmatrix}.$$

(d) Find the row reduced echelon form of the matrix

$$\begin{pmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{pmatrix}.$$

- 5. Define the term adjoint of A as applied to an $n \times n$ matrix $A = (a_{ij})$.
 - (a) With the usual notations, prove that

$$A \cdot (adjA) = (adjA) \cdot A = detA \cdot I.$$

Hence prove the following:

i.
$$det(adj A) = (det A)^{n-1}$$
;

ii.
$$adj(adj A) = (det A)^{n-2}A$$
.

(b) Let P, Q and R be square matrices of the same order, where P and R are non-singular. Let O be the zero matrix of the same order. Prove that the inverse of the block matrix

$$\left(\begin{array}{ccc}
P & | & O \\
- & | & - \\
Q & | & R
\end{array}\right)$$

is

$$\begin{pmatrix} P^{-1} & | & O \\ ---- & | & --- \\ -R^{-1}QP^{-1} & | & R^{-1} \end{pmatrix}$$

-(c) Find the determinant of

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1+c \end{pmatrix}$$

where $a, b, c \in \mathbb{R}$.

6. (a) State the necessary and sufficient condition for a system of linear equations to consistent.

Reduce the augmented matrix of the following system of linear equations

$$a_{21}x_1 + a_{22}x_2 = b_2.$$

to its row reduced echelon form and hence determine the conditions on the received real numbers $a_{11}, a_{12}, a_{21}, a_{22}, b_1$ and b_2 such that the system has

 $a_{11}x_1 + a_{12}x_2 = b_1$

- (i) a unique solution;
- (ii) no solution;
- (iii) more than one solution.
- (b) Find the condition on the real numbers b_1, b_2, b_3 and b_4 for the system of line equations

$$x_1 - x_3 + 3x_4 + x_5 = b_1$$

$$2x_1 + x_2 - 2x_4 - x_5 = b_2$$

$$x_1 + 2x_2 + 2x_3 + 4x_5 = b_3$$

$$x_2 + x_3 + 5x_4 + 6x_5 = b_4$$

to be consistent.

ġ

Find the solution of the above system if $b_1 = -3$, $b_2 = 5$, $b_3 = 6$ and $b_4 = -2$.

(c) State and prove Crammer's rule for 3 × 3 matrix and use it to solve

$$2x_1 - 5x_2 + 2x_3 = 7$$

$$x_1 + 2x_2 - 4x_3 = 3$$

$$3x_1 - 4x_2 - 6x_3 = 5.$$