

EASETRN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE – REPEAT EXTERNAL DEGREE

FIRST SEMESTER 2003-2004 (OCTOBER 2006)

EXTCH 101 PERIODICITY AND BONDING

Time allowed: ONE Hour

Candidate must NOT start writing their answers until told to do so

You may find the following data useful

Avagadro constant (N_A): 6.023 x 10²³ mol⁻¹

Electron charge (e): 1.602 x 10⁻¹⁹ C

Faraday constant (F): 9.648 x 10⁴ Cmol⁻¹

Gas constant (R): 8.314 JK⁻¹mol⁻¹

Planck's constant (h): 6.626 x 10⁻³⁴ Js

Rest mass of electron (m_e): 9.1 x 10⁻³¹ kg

Velocity of light (c): 3 x 10⁸ ms⁻¹

The use of a non -programmable calculator is permitted

0 4 MAR 2008

- (a) (I) Explain the following with an example in each case.
 - (i) Pauli Exclusion Principle
 - Hund's Rule (ii)
 - (II) Showing x, y and z axes draw the following orbitals;

 - $\begin{array}{cccc} p_z & & \\ d & x y \end{array}$ (ii)
 - (iii) d_{xv}

(30 marks)

(30 marks)

(III) A lamp gives out 1.5 kJ of energy in one minute in the form of yellow light of wavelength 580 nm. How many photons of yellow light are generated in one second?

(28 marks)

(b) List the values of n,l and m₁ for the orbitals in the 4d sub shell.

(12 marks)

- (a) Predict the geometry of the following molecules using the concept of hybridization.
 - $HgCl_2$ ($Hg [Xe]6s^24f^{14}5d^{10}$) (i)
 - (ii) AlI₃
 - (iii) PF5

(40 marks)

(b) Predict the shape of HOCl using VSEPR theory.

(10 marks)

- (c) Write down the molecular orbital configurations of N₂ and N₂⁺. Predict the following properties using molecular orbital theory.
 - Bond order of N₂ and N₂⁺. (i)
 - Magnetic character of N₂ and N₂⁺. (ii)
 - Bond length of N₂⁺ relative to that of N₂. (Is it shorter or longer). Give (iii) reason.
 - Bond strength of N_2^+ relative to that of N_2 . (Is it stronger or weaker). (iv) Give reason.

(50 marks)