

EASETRN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE – PROPER EXTERNAL DEGREE

FIRST SEMESTER 2003-2004 (OCTOBER 2006)

EXTCH 102 THERMODYNAMICS & INTRODUCTION TO ELECTRO CHEMISTRY

Time allowed: ONE Hour

Candidate must NOT start writing their answers until told to do so

You may find the following data useful

Avagadro constant (N_A): 6.023 x 10²³ mol⁻¹

Electron charge (e): 1.602 x 10⁻¹⁹ C

Faraday constant (F): 9.648 x 10⁴ Cmol⁻¹

Gas constant (R): 8.314 JK-1mol-1

Planck's constant (h): 6.626 x 10⁻³⁴ Js

Rest mass of electron (m_e): 9.1 x 10⁻³¹ kg

Velocity of light (c): 3 x 10⁸ ms⁻¹

The use of a non -programmable calculator is permitted

1. a) (i) Write the mathematical form of total work done by a gas. 0.4 MAR 2008

(05 marks

(ii) Given that the equation of state of gas is P(V - nb) = nRT, where b' is a constant. Show that the work done (W) by the gas in a reversible isothermal expansion when the volume is changed from V_1 to V_2 is,

$$W = nRT \ln \left(\frac{V_1 - nb}{V_2 - nb} \right)$$
 (25 marks)

- (iii) If the above gas behaves ideally then deduce that $W = nRT \ln \left(\frac{V_1}{V_2} \right)$ (10 marks)
- (iv) 2 moles of ideal gas at 300 K and 6 atm pressure undergo expansion isothermally to half the initial pressure. Calculate the work done by the gas on the surroundings. ($R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$)

 (30 marks)
- b) (i) Define the term 'molar heat capacity'. (05 marks)
 - (ii) The molar isobaric heat capacity C_p for $NH_3(g)$ is given by $C_p = a + bT + \frac{c}{T}$, where T is the temperature and 'a', 'b' and 'c' are constants. Show that the change in enthalpy (ΔH) when the temperature of **one mol** of $NH_3(g)$ is increased from T_1 to T_2 is

$$C_p = a(T_2 - T_1) + \frac{b}{2}(T_2^2 - T_1^2) + c \ln\left(\frac{T_2}{T_1}\right)$$
 (25 marks) [Hint: $C_p = \left(\frac{\partial H}{\partial T}\right)_p$]

2. a) Derive the following auxiliary relations for a reversible process

(i)
$$dH = TdS + VdP$$

ú

(ii)
$$dG = VdP - SdT$$

[Hint:
$$dU = TdS - PdV$$
]

(20 marks)

b) (i) Assuming G = G(T, P), derive the Maxwell relation

$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$$

(20 marks)

- (ii) 3 moles of $O_2(g)$ at 300 K is compressed isothermally from 10 to 20 atm. Calculate the change in entropy, assuming that $O_2(g)$ obeys the ideal gas equation (25 marks)
- c) (i) Write the Nernst equation and identify all the terms involved in it. (10 marks)
 - (ii) If the electrode potential E for the Fe^{3+}/Fe^{2+} system is 0.889 V calculate $\frac{[Fe^{3+}]}{[Fe^{2+}]}$. $(E_{Fe^{3+}/Fe^{2+}}^{\theta} = 0.771 \text{ V}; 2.303 \text{ RT/F} = 0.059)$ (25 marks)