EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE (1996/97)

EXTERNAL DEGREE

(June/August' 2004)

Re-Repeat

EXMT 303 & 304 - FUNCTIONAL ANALYSIS & TOPOLOGY

BRARM

Answer <u>five</u> questions only selecting <u>at least two</u> questions from each section

Time : Three hours

Section A

- 1. State what is meant to say that two norms in a normed linear space are equivalent.
 - (a) If {x₁, x₂, · · · , x_n} is a set of linearly independent vectors in a normed linear space X, then there exists a number k > 0 such that

$$\|\sum_{i=1}^{n} \eta_i x_i\| \ge k \sum_{i=1}^{n} |\eta_i|$$

for every choice of scalars $\eta_1, \eta_2, \cdots, \eta_n$.

south and ong with these

10

Use this result to prove the following:

- i. Every finite dimensional subspace of X is complete;
- ii. Any two norms on a finite dimensional normed linear space are equivalent.

(b) In unitary space \mathbb{C}^n two norms $\|.\|_1$ and $\|.\|_2$ are defined by, $\|x\|_1 = |x_1| + |x_2| + \dots + |x_n|$ $\|x\|_2 = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}$ where $x = (x_1, x_2, \dots, x_n)$. Prove that for every $x \in \mathbb{C}^n$,

$$\frac{1}{\sqrt{n}} \le \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

- 2. Define the term "bounded linear operator" from a normed linear space into another normed linear space.
 - (a) Let T be a linear operator from a normed linear space X into a normed linear space Y. Show that the following statements are equivalent.
 - i. T is continuous at the origin;
 - ii. T is continuous;
 - iii. T is bounded.
 - (b) If T is a linear operator from a normed linear space X onto a normed linear space Y, then show that the inverse operator
 T⁻¹: Y → X exists and is bounded if and only if there exists
 k > 0 such that

$$|| T(x) || \ge k || x || \qquad \forall x \in X.$$

(c) Show that the operator $T: l^2 \to l^2$ defined by

$$T(x) = (\eta_i), \quad \eta_i = \frac{\zeta_i}{2^i}, \quad x = (\zeta_i)$$

BR

st-

is linear and bounded.

3. State the Hahn Banach theorem for normed linear spaces.

(a) Let X be a normed linear space and let x₀ ≠ 0 be any element of X. Prove that there exists a bounded linear functional g on X such that || g ||= 1 and g(x₀) = || x₀ ||.
Deduce that if f(x) = f(y) for every bounded linear functional on

X then x = y.

- (b) Let Y be a closed linear subspace of a normed linear space X and let x₀ ∈ X \ Y, and let δ = inf{|| y − x₀ ||: y ∈ Y}. Show that there exists a bounded linear functional f defined on X such that || f ||= 1, f(Y) = {0} and f(x₀) = δ.
- 4. (a) Define the following terms in a normed linear space:
 - i. Schauder basis;
 - ii. Absolutely convergent series.
 - (b) Let $e_i = (0, 0, \dots, 1^{i^{th}}, 0, \dots)$, $i \in \mathbb{N}$. Prove that the sequence $(e_i)_{i=1}^{\infty}$ is a schauder basis for the sequence space l^p if $1 \leq p < \infty$.
 - (c) Prove that a normed linear space is complete if and only if every absolutely convergent series is convergent.
 - (d) Prove that the dual space of l^1 is l^{∞} .

Prove that a subset of the real line R baving more than one point

, <u>Section B</u>

- 5. Define the following terms:
 - Topology on a set;
 - Subspace of a topological space;
 - Closed subset of a topological space.
 - (a) Let X be a non-empty set and let (Y, τ) be a topological space. Let f: X → Y and for A ⊆ Y, define f⁻¹(A) = {x ∈ X : f(x) ∈ A}. Prove that {f⁻¹(B) : B ∈ τ} is a topology on X. Is it true that any closed set in a topological subspace is closed in its topological space? Justify your answer.
- (b) Let τ_1 and τ_2 be two topologies on a non-empty set X. Is $\tau_1 \cup \tau_2$ is a topology on X? Justify your answer.
 - 6. Define the following terms in the topological space.
 - Separated set;
 - Connected set.
 - (a) Let X be a topological space. Prove the following:
 - i. X is disconnected if and only if there exists a non-empty proper subset of X which is both open and closed.
 - ii. If X is connected and f is a continuous function defined on X then f(X) is connected.
 - iii. X is disconnected if and only if there exists a continuous function of X onto a two point space $\{0, 1\}$.
 - (b) Prove that a subset of the real line R having more than one point is connected if and only if it is an interval.

7. Let f be a function from a topological space (X, τ_X) into a topological space (Y, τ_Y) .

LI

4

- (a) What is meant by that f is continuous at a point $x_0 \in X$?
- (b) Prove that, f is continuous on X if and only if, f⁻¹(G) is open in X, for every open subset G in Y.
- (c) Is it true that if f is continuous on X then the image of a closed set in X is closed in Y? Justify your answer.
- (d) Prove that f is continuous on X if and only if f⁻¹(A⁰) ⊆ {f⁻¹(A)}⁰ for every subset A of Y.
- (e) If f is continuous and Z is a subspace of X, show that the restriction of f to Z is continuous.
- 8. Define :
 - Frechet space (T_1) ;
 - Housdorff space (T_2) .
 - (a) Prove that every Housdorff space is a Frechet space. Is the converse true? Justify your answer.
 - (b) Prove that a topological space X is a Frechet space if and only if every singleton subset of X is closed.
 - (c) Prove that every subspace of a Frechet space is also a Frechet space.