2 5 OCT 200

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 1996/97

(June/July' 2004)

EXTERNAL DEGREE

EXMT 205 & 208 - MATHEMATICAL METHODS & NUMERICAL ANALYSIS

Answer <u>four</u> questions only selecting <u>two</u> questions from each section

Time: Two hours

Section A

- 1. (a) Write the transformation equation for the following tensors.
 - i. Ajkl
 - ii. B_{klm}^{ij}
 - iii. C
 - (b) If A_r^{pq} and B_t^s are tensors, prove that $C_{rt}^{pqs} = A_r^{pq} B_t^s$ is also a tensor.
 - (c) The covariant components of a tensor in rectangular co-ordinate system are yz, 3, 2x+y. Find its covariant components in spherical co-ordinates (r, θ, ϕ) .

- 2. (a) Explain the terms "Covariant derivative" and "Absolute derivative" as applied to a tensor of type A_{jk}.
 - (b) Prove that the absolute derivative of δ_k^j , g_{jk} , g^{jk} are zero.
 - (c) Show that if A_{rs}^{pq} is a tensor, then $A_{rs}^{pq} + A_{sr}^{qp}$ is a symmetric tensor and $A_{rs}^{pq} A_{sr}^{qp}$ is a skew symmetric tensor.
 - (d) Write the covariant derivative of $A_i^{jk}B_m^l$ with respect to x^q .
- 3. (a) Explain what is meant by the following terms.
- i. Christoffel symbols of first and second kinds,
 - ii. Geodesics.
 - (b) With the usual notation, prove the following:

i.
$$[pq, r] = [qp, r]$$
,

ii.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p]$$
,

iii.
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn}\Gamma^q_{mn} - g^{qn}\Gamma^p_{mn} \ .$$

(c) Find the Christoffel symbols of the second kind for the line element

$$ds^2 = d\rho^2 + \rho^2 d\phi^2 + dz^2$$

and find the corresponding Geodisic equations.

(b) If AP and Br are tensors, prove that CE = AP Br 14 layer

Section B

4. (a) Let $P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, $a_0 \neq 0$ and let the sequence b_0, b_1, \dots, b_n be defined by

$$b_0 = a_0$$

 $b_i = tb_{i-1} + a_i, \quad i = 1, 2, 3, \dots, n.$

Show that the polynomial

$$P_{n-1}(x) = b_0 x^{n-1} + b_1 x^{n-2} + \dots + b_{n-1}$$

is the quotient polynomial and the constant $P_n(t)$ is the remainder when $P_n(x)$ is divided by (x-t).

Hence find the following:

i. the quotient polynomial and remainder when

$$P_4(x) = x^4 + 3x^3 + 4x + 1$$
 is divided by $(x-2)$.

- ii. the Taylor series of $P_4(x)$ about the point x=2.
- (b) Explain what is meant by
 - i. floating point representation,
 - ii. fixed point representation.

Round the following numbers in FI(10,3).

Round the following numbers in FL(10, 2).

ii.
$$-3.15$$
.

5. Define the order of convergence of an iterative method to compute the roots of a non-linear equation

$$f(x)=0 \cdots (1).$$

- (a) Obtain Newton-Raphson algorithm to compute the roots of the equation (1) in an interval [a, b].
 Show that the order of convergence of Newton-Raphson algorithm is at least 2.
- (b) Obtain Secant method to compute the roots of the equation (1) in an interval [a, b].
 Find √78.8 correct to 4 decimal places by using the methods (a) and (b).
- 6. (a) Let f: [a, b] → R and let x₀, x₁, · · · , x_n be distinct points in [a, b].
 Prove that there exists a unique polynomial P of degree at most n, the Lagrage interpolation polynomial, such that

$$p(x_i) = f(x_i), \quad i = 0, 1, 2, \dots, n.$$

Find the Lagrange interpolation polynomial for $f(x) = \frac{1}{x}$ using the distinct points $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$.

(b) Let $f \in C^{n+1}[a,b]$ and p be the polynomial of degree n which interpolates f at the distinct points x_0, x_1, \dots, x_n in [a,b].

Let $l(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. Then show that for each $x \in [a, b]$, there exists $c \in [a, b]$ such that

$$f(x) - p(x) = \frac{l(x)}{(n+1)!} f^{(n+1)}(c).$$

Let $p \in P$ interpolate at x_0 and $x_1 = x_0 + h$ and $f \in C^2[x_0, x_1]$ for $x_0 \le x \le x_1$ then show that $|f(x) - p(x)| \le \frac{h^2}{8} \max |f^2(c)|$, $x_0 \le c \le x_1$.