EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 1996/97

(JUNE-AUGUST 2004)

EXTERNAL DEGREE

EXPH202 - ELECTRONICS

Time: 02 hours.

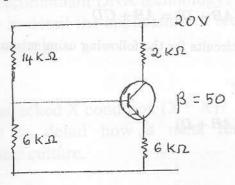
Answer FOUR questions only

- What do you mean by intrinsic semiconductor. Explain how an intrinsic semiconductor, for example Germanium, may be converted into
 - (i) an N-type semiconductor
 - (ii) a P-type semiconductor

Current density of a conductor is given by $J=\rho V$. By using this derive an expression for conductivity of an intrinsic semiconductor. The symbols have their usual meanings.

Assume that the Avogadro's number is 6.02×10^{23} molecules/mole, Germanium atomic weight is 72.6g and the density of Germanium is $5.32gcm^{-3}$.

- (i) Find the concentration of atoms in Germanium.
- (ii) compute the value of conductivity of the intrinsic Germanium at 3000K assuming $\mu_n = 1800cm^2V^{-1}sec^{-1}$, $\mu_p = 3800cm^2V^{-1}sec^{-1}$ and $n = 2.53 \times 10^{13}$.
- (iii) Deduce the resistivity of the intrinsic Germanium at 3000K.
- 2. Explain the operation of the Zener diode


A regulated power supply is required for a load drawing a normal current 100mA at 15V. An unregulated supply having open circuit output voltage of 12V and output resistant of 20Ω (Allowable power through the Zener diode is 200mW and 5V).

- (i) By suitable assumption, obtain the required value of R_z (Zenor resistance)
- (ii) What is the maximum current can pass through the Zener diode?
- (iii) What are the maximum and minimum current this regulator can safely deliver?
- (iv) What voltage will be measured at the battery terminals when the design current is being drawn?
- 3. Explain using a circuit diagram the operation of the half-wave rectifier. Sketch and label clear diagrams for
 - (i) Input wave form.

- (ii) Output wave form across the resistance when the capacitor is absence.
- (iii) Output wave form across the resistance when the capacitor is present.

The output of a half wave rectifier is connected to a load resistance of $10K\Omega$ through a capacitor filter of $100\mu F$. The r.m.s value and the frequency of the input voltage to the primary coil of the transformer are 230V and 50Hz respectively. The turns ratio of the transformer is 2.5:1. Calculate

- (i) r.m.s ripple voltage
- (ii) d.c component of load voltage
- (iii) total load power
- 4. Explain the behaviour of a bipolar junction transistor. Sketch and explain input and output characteristics of the transistor.

For the above npn transistor circuit find

- (i) collector current
- (ii) voltage drop across collector and emitter Neglect the voltage drop across base and emitter.
- Briefly explain characteristics of an ideal operational amplifier. Find the relationship between input and output voltages of following Operational Amplifier.
 - (i) Inverting Amplifier

- (ii) Integrator
- (iii) Differentiator

For an integrator circuit, if the input is dc voltage draw the output voltage of the circuit.

- 6. Draw the symbols and truth table for the following.
 - (i) AND
 - (ii) OR
 - (iii) NAND
 - (iv) NOR

Prove the following Boolean identity.

- (i) $A + \bar{A}B = A + B$
- (ii) AC + ABC = AC
- (iii) (AB+C)(AB+D) = AB+CD

Draw the logic circuits for the following using minimum gates.

- (i) $\ddot{A} + B$
- (ii) AB + C
- (iii) (AB+C)(AB+D)
- (iv) $\bar{A}B + \bar{B}A$