EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF CHEMISTRY

FLESTEXAMINATION IN SCIENCE 2002/2003

FIRST SEMESTER - 2004 (PROPER) EXCH101 PERIODICITY AND BONDING

EXTERNAL DEGREE

Answer all Questions

Time: 1 Hour

- 01) (Planck's const.= $6.6 \times 10^{-34} \text{Js}$; $1 \text{eV} = 1.6 \times 10^{-19} \text{J}$; Velocity of light = $3 \times 10^8 \text{ms}^{-1}$; Mass of electron = 9.1×10^{-31} ; Rydberg const.R_H = $2.18 \times 10^{-18} \text{J}$)
 - a) (i) What is the range of wave length in which visible region exist?
 - (ii) The wave length of the green light from a signal is 580nm. What is the frequency of this radiation?
 - b) The work function of sodium is 2.5eV.
 - (i) In photo electric experiment, what condition must be satisfied to produce the photo-electrons?
 - (ii) Calculate the threshold frequency.
 - (iii)Calculate the maximum velocity of the photo-electrons produced when sodium is illuminated by the light of wave length 6x10⁻⁸m.
 - c) (i) Write the expression for the energy of the Hydrogen atom.
 - (ii) Hence calculate the wave length of light that correspond s to the transition of the electron from the n=4 to n=2 state of the Hydrogen atom. Is the light absorbed or emitted?
 - a) State (02)
 - (i) Pauli's exclusion principle
 - (ii) Hund's rule
 - b) Showing the x,y,z axes, draw the following orbitals
 - (i) P_z 2
 - (ii) d_x^2 -y
 - (iii) d_{xy}
 - c) Write the electronic configuration of oxygen atom (atomic number 8). Give the quantum numbers n,l,m1,ms for each of the unpaired electrons in an oxygen atom.
 - d) Write down the molecular orbital electronic configuration of O_2^{2-} and NO. In each case
 - (i) Calculate the bond order
 - (ii) Predict the magnetism.