

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE 1996/97

(June/July' 2004) (Repeat)

EXTERNAL DEGREE

EXMT 101 - FOUNDATION OF MATHEMATICS

Answer four questions only

Time : Two hours

- (a) i. Define the following terms "tautology" and "contradiction" as applied to a proposition.
 - ii. Explain what is meant by the statement that two propositions are logically equivalent.
 - (b) Let p, q and r be three propositions. Prove the following:

i.
$$(p \land q) \lor > p \equiv > p \lor q$$
;

ii.
$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$
;

iii.
$$p \to (q \to r) \equiv (p \land > r) \to > q$$
.

(c) Test the validity of the following argument:
If I study, then I will not fail Mathematics. If I do not play basketball, then I will study. But I failed Mathematics. Therefore, I played basketball.

2. Define the following:

- The difference, $A \setminus B$, of two sets A and B,
- Symmetric difference, $A \triangle B$, of two sets A and B.

Prove the following:

(a)
$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$
;

(b)
$$(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$$
;

(c)
$$(A \triangle B) = (A \cup B) \setminus (A \cap B)$$
;

(d)
$$(A \triangle B) \cap (A \cap B) = \phi$$
.

3. What is meant by an equivalence relation?

- (a) Let R be the relation in the natural numbers such that xRy ⇔ (x - y) is divisible by 5. Prove that R is an equivalence relation.
- (b) Let A be a set and let \sim be an equivalence relation on A. Let $[a] = \{x \in A \mid x \sim a\}$. Prove the following:

i.
$$[a] \neq \Phi \ \forall a \in A$$
;

is
$$a \sim b \Leftrightarrow [a] = [b] \ \forall \ a, b \in A$$
;

iii.
$$b \in [a] \Leftrightarrow [a] = [b] \ \forall \ a, b \in A$$
;

iv. Either
$$[a] = [b]$$
 or $[a] \cap [b] = \Phi \ \forall \ a, b \in A$.

- 4. (a) Define the following terms.
 - i. Injective function;
 - ii. Surjective function;
 - iii. Bijective function.
 - (b) Let $f: S \longrightarrow T$ be a function and let A, B be subsets of S.
 - i. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
 - ii. Prove that $f(A \cup B) = f(A) \cup f(B)$.
 - iii. Is it true that $f(A) \cap f(B) \subseteq f(A \cap B)$? Justify your answer.
 - (c) Let $f:A\longrightarrow B$ and $g:B\longrightarrow A$ be two mappings such that $g\circ f=I_A$ and $f\circ g=I_B$. Prove that f is bijective and $g=f^{-1}$.
- 5. (a) Define the following terms:
 - · Partially ordered set;
 - Totally ordered set;
 - · First element of a partially ordered set;
 - Last element of a partially ordered set;
 - · Minimal element of a totally ordered set.
 - (b) Let X be the set of all functions from $\mathbb R$ into [0,1]. Define a relation \sim on X by

 $f \sim g \Leftrightarrow f(x)-g(x) \geq 0$ for any $f,g \in X$ and for every $x \in \mathbb{R}$.

Prove that (X, \sim) is a partially ordered set.

- (d) Show that if totally ordered set (A, \preceq) has a minimal element then it will be the first element.
- 6. (a) Define the following:
 - i. Group,
 - ii. Subgroup of a group.
 - (b) Let G be the set of real numbers except -1. An operation \odot is defined on G as

$$a \odot b = a + b + ab, \quad \forall \ a, b \in G.$$

Prove that (G, \odot) is a group.

- (c) Let S be a subset of a group G. Prove that S is a subgroup of G if and only if the following conditions hold.
 - i. $S \neq \phi$;
 - ii. $x^{-1}y \in S$ for any $x, y \in S$.
- (d) Prove that if H and K are subgroups of a group G then $H \cap K$ is also a subgroup of G.